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REPORT No. 876

THE STABILITY OF THE LAMINAR BOUNDARY LAYER IN A COMPRESSIBLE FLUID

By LesTeER LEES

SUMMARY

The present paper is a confinuation of a theoretical investi-
gation of the stability of the laminar boundary layer in a com-
pressible fluid. An approximate estimate for the minimum
eritical Reynolds number Rgam, or stability limit, is obtained

in ferms of the distribution of the kinematic wiscosity and the
—_— T
product of the mean density p* and mean vorticity %« across the

boundary layer. With the help of this estimate for R, .
it is shown that withdrawing heat from the fluid through the
solid surface increases Rgcrm_ﬂ and stabilizes the flow, as
compared with the flow over an insulated surface at the same
Maek number. Conduction of heat to the fluid through the
solid surface has exactly the opposite effect. The value of R, .
for the insulated surface decreases as the Aach number in-
creases for the case of a uniform free-siream velocity. These
general conclusions are supplemented by detailed calculations
of the curves of ware number (inverse wave length) against
Reynolds number for the neutral disiurbances for 10 representa-
tive cases of insulated and noninsulated surfaces.

So far as laminar stability is concerned, an important differ-
ence exists between the case of a subsonic and supersonic free-
stream velocity ouiside the boundary layer. The neuiral
boundary-layer disturbances thai are significant for laminar sta-
bility die out exponentially with distance from the solid surface;
therefore, the phase velocity c¢* of these disturbances is subsonic
relative to the free-stream velocity wug™—or u,*—c*< q,%,

where a,* is the local sonic wvelocity. When uéj‘:ﬂff(,(l
Qo

(where 31, 1s free-siream Mach number), i follows that

0 =c¢* Se* . and any laminar boundary-layer flow is ultimately

unstable at sufficiently high Reynolds numbers because of the

destabilizing action of wviscosify mear the solid surface, as

explained by Prandtl for the incompressible fluid. When 31, >1,

ﬁowerer’ w>1 .ZL[Q>0' If f]le Q’Zlanflfy [d—y* (P @—;) :;___c—;

1s large enough negatively, the rate at which energy passes from
the disturbance to the mean jflow, which 1s proportional fo

—c* 4 (7 dl_*) ean always be large enough to coun-
dy* \* dy*/) fs=e’

terbalance the rate at which energy passes from the mean flow
to the disturbance because of the destabilizing action of viscosity
near the solid surface. In that case only damped disturbances
exist and the laminar boundary layer is completely stable at all

Reynolds numbers. This condition occurs when the rate at
which heat is withdraun from the fluid through the solid surface
reaches or exceeds a critical value that depends only on the
Mach number and the properties of the gas. Caleulations
show that for ALy >8 (approzx.) the laminar boundary-layer flow
Jor thermal equilibrium—achere the heat conduction through the
solid surface balances the heat radiated from the surface—is
ecompletely stable at all Reynolds numbers under free-flight
conditions if the free-stream velocity is uniform.

The results of the analysis of the stability of the laminar
boundary layer must be applied with care to discussions of
transition; however, withdrawing heat from the fluid through
the solid surface, for example, not only increases R, but
also decreases the initial rate of amplification of the self-excited

disturbances, which is roughly proportional to 1/4/Ru.,,,,.

Thus, the effect of the thermal conditions at the solid surface on

the iransition Reynolds number R, is similar fo the effect on

Reer,,,. A comparison between this conclusion and experi-
mental investigations of the effect of surface heating on transi-
tion at low speeds shows that the results of the present paper
give the proper direction of this effect.

The extension of the results of the stability analysis to laminar
boundary-layer gas flows with a pressure gradient in the

direction of the free stream is discussed.

INTRODUCTION

By the theoretical studies of Heisenberg, Tollmien,
Schlichting, and Lin (references 1 to 5) and the careful
experimental investigations of Liepmann (reference 6) and
H. L. Dryden and his associates (reference 7}, it has been
definitely established that the flow in the laminar boundary
layer of a viscous homogeneous incompressible fluid is un-
stable above a certain characteristic eritical Reynolds
number. When the level of the disturbances in the free
stream is low, as in most cases of technical interest, this
inherent instability of the laminar motion at sufficiently
high Reynolds numbers is responsible for the ultimate
transition to turbulent flow in the boundary layer. The
steady laminar boundary-layer flow would always represent
a possible solution of the steady equations of motion, but
this steady flow is in a state of unstable dynamic equilibrium
above the ecritical Reynolds number. Self-excited dis-
turbances (Tollmien waves) appear in the flow, and these
disturbances grow large enough eventually to destroy the
laminar motion.
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The question naturally arises as to how the phenomena
of laminar instability and transition to turbulent flow are
modified when the fluid velocities and temperature varia-
tions in the boundary layer are large enough so that the
compressibility and conductivity of the fluid can no longer
be neglected. The present paper represents the second
phase of a theoretical investigation of the stability of the
laminar bhoundary-layer flow of a gas, in which the com-
pressibility and heat conductivity of the gas as well as its
viscosity are taken into account. The first part of this work
was presented in reference 8. The objects of this investiga-
tion are (1) to determine how the stability of the laminar
boundary layer is affected by the free-stream Mach number
and the thermal conditions at the solid boundary and (2) to
obtain a better understanding of the physical basis for the
instability of laminar gas flows. In this sense, the present
study is an extension of the Tollmien-Schlichting analysis of
the stability of the laminar flow of an incompressible fluid,
but the investigation is also concerned with the general
question of boundary-layer disturbances in a compressible
fluid and their possible interactions with the main external
flow.

SYMBOLS

With minor exceptions the symbols used in this paper are
the same as those introduced in reference 8. Physiecal
quantities are denoted by ap asterisk, or star; whereas the
corresponding nondimensional quantities are unstarred.
A har over a quantity denotes mean value; a prime denotes
s fluctuation; the subscript 0 denotes free-stream values
at the “edge’ of the boundary layer; the subscript 1 denotes
values at the solid surface; and the subscript ¢ denofes
values at the inner “eritical layer,” where the phase velocity
of the disturbance equals the mean flow velocity. The
free-stream values are the characteristic measures for all
nondimensional quantities. The characteristic length meas-
ure is the boundary-layer thickness 8, except where otherwise
indicated. Note that in order to conform with standard
notation, the symbol & for boundary-layer thickness is
unstarred; whereas the symbols §* and ¢ are used for
boundary-layer displacement thickness and boundary-layer
momentum thickness, respectively.

z* distance along surface

y* distance normal to surface

£ time

u* component of velocity in z*~direction

w2
u*

p¥ component of velocity in y*-direction
i

SO—w j

P stream function for mean flow

p* density of gas

p* pressure of gas

T+ temperature of gas

T laminar shear stress

w* ordinary coefficient of viscosity of gas
p* kinematic viscosity of gas (11, */0*)
k* thermal conductivity of gas
€y specific heat at constant volume
Cy specific heat at constant pressure
R* gas constant per gram
¥ ratio of specific heats (¢,/e,); 1.405 for air
c* complex phase velocity of boundary-layer
disturbance
AF wave length of boundary-layer disturbance
8 boundary-layer thickness
&% boundary-layer displacementi thickness
([ a—mayr)
0
8 boudary-layer momentum thickness
<f pw(l—w)dy*)
O
a* _ wave number of boundary-layer disturbance
(2r/x%)
_ 27
oz—>\*—/5
2T
AN b
)
R Reynolds number (p“‘iia )
Mg
Ry P le*
#10*
My Mach number :u{’_i
VYR TF
;1—*
¢ Prandt]l number { ¢, —0—*

1. PRELIMINARY CONSIDERATIONS

In the first phase of this investigation {(reference 8) the
stability of the laminar boundary-layer flow of a gas is
analyzed by the method of small perturbations, which was
already so successfully utilized for the study of the stability
of the laminar flow of an incompressible fluid. (Sce refer-
ence 5.)_ By this method a nonsteady gas flow is investigated
in which all physical quantities differ from their values in a
given steady gas flow by small perturbations that are func-
tions of the time and space coordinates. This nonsteady
flow must satisfy the complete gas-dynamic equations of mo-
tion and the same boundary conditions as the given steady
flow. The question is whether the nonsteady flow damps to
the steady flow, oscillates about it, or diverges from it with
time—that is, whether the small perturbations are damped,
neutral, or self-excited disturbances in time, and thus whether
the given steady gas flow is stable or unstable. The analysis
is particularly concerned with the conditions for the existence
of neutral disturbances, which mark the transition from stable
to unstable flow and define the minimum critical Reynolds
number.
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In order to bring out some of the principal features of the
stability problem without becoming involved in hopeless
mathematical complications, the solid boundary is taken as
two-dimensional and of negligible curvature and the boundary-
layer flow is regarded as plane and essentially parallel;
that is, the velocity component in the direction normal to
the surface is negligible and the velocity component parallel
to the surface is a function mainly of the distance normal
to the surface. The small disturbances, which are also two-
dimensional, are analyzed into Fourier components, or normal
modes, periodic In the direction of the free siream; and the
amplitude of each one of these partial oscillations is a funection
of the distance normal to the solid surface, that is,

’U:*'zuq* f(y) eia(z—cz)

In the study of the stability of the laminar boundary layer,
it will be seen that only the local properties of the “parallel”
flow are significant. To include the variation of the mean
velocity in the direction of the free stream or the velocity
component normal ic the solid boundary in the problem
would lead only to higher order terms in the differential
equations governing the disturbances, since both of these
factors are inversely proportional to the local Reynolds num-
ber based on the boundary-layer thickness. (See, for ex-
ample, reference 2.) By a careful analysis, Pretseh has
shown that even with a pressure gradient in the direction of
the free stream the local mean-velocity distribution alone
determines the sability characteristics of the local boundary-
layer flow at large Reynolds numbers (reference 9). Such
a statement applies only to the stability of the fow within
the boundary Iayer. For the interaction between the bound-
ary layer and a main “external” supersonic flow, for example,
it is obviously the variation in boundary-layer thickness and
mean velocity along the surface that is significant. (See
reference 10.)

The aforementioned considerations also lead quite natu-
rally to the study of individual partial oscillations of the
form f(y)el==e®  for which the differential equations of
disturbance do not contain x and ¢ explicitly. These partial
oscillations are ideally suited for the study of instability, for
in order to show that a flow is unstable it is unnecessary to
consider the most general possible disturbance; in fact, the
simplest will suffice. It is only necessary to show that a
particular disturbanee satisfying the equations of motion and
the boundary conditions is self-excited or, in this case, that
* the imaginary part of the complex phase velociiy ¢ is positive.

In reference 8 the differential equations governing one
normal mode of the disturbances in the laminar boundary
layer of a gas were derived and studied very thoroughly.
The complete set of solutions of the disturbance equations
was obtained and the physical boundary econditions that
these solutions satisfy were investigated. It was found that
the final relation between the values of ¢, ¢, and R that
determines the possible neutral disturbances (limits of
stability) is of the same form in the compressible fluid as in
the incompressible fluid, to & first approximation. The basis

for this result is the fact that for Reynolds numbers of the
order of those encountered in most aerodynamic problems
the temperature disturbances have only a negligible effect

on those particular velocity solutions of the disturbance
equations that depend primarily on the viscosity (viscous
solutions). To a first approximation, these viscous solutions
therefore do not depend directly on the heat conductivity

and are of the same form as in the incompressible fluid,
except that they involve the Reynolds number based on the
kinematic viscosity near the solid boundary (where the vis-
cous forces are important) rather than in the free stream.
In this first approximation, the second viscosity coefficient,
which is & measure of the dependence of the pressure on the
rate of change of density, dees not affect the stability of the
laminar boundary layer. From these results it was inferred
that at large Reynolds numbers the influence of the viscous
forees on the stability is essentially the same as in an incom-
pressible fluid. This inference is borne out by the results
of the present paper.

The influence of the inertial forces on the stability of the
laminar boundary layer is reflected in the behavior of the
asymptotic inviseid solutions of the disturbance equations,
which are independent of Reynolds number in first approxi-
mation. The results obtained in reference 8 show that the
behavior of the inertial forces is dominated by the distribu-
tion of the product of the mean density and mean vortieity

pg—;} across the boundary layer. (The gradient of this quan-

tity, or a(i(p%v), which plays the same role as the gradient

of the vorticity in the case of an incompressible fluid, is a
measure of the rate at which the z-momentum of the tbm
layer of fluid near the critical layer (where w=¢) increases,
or decreases, because of the transport of momentum by the
disturbance.}) In order to clarify the behavior of the inertial
forces, the limiting case of an inviscid fluid (B— «) is studied
in detail in reference 8. The following general criterions are

obtained: (1) If the quantity %(P%U) vanishes forsome value

of 'w>1—-31,70, then neutral and self-excited subsonic disturb-

ances exist and the Inviscid compressible flow is unstable.

(2) If the quantity 7 (p dy) does not vanish for some value

of w>1_E’ then all subsonic disturbances of finite wave

length are damped and the inviseid compressible flow is
stable. (Outside the boundary layer, the relative velocity
between the mean flow and the r-commponent of ithe phase
velocity of a subsonic disturbance is less than the mean sonic
velocity. The magnitude of such a disturbance dies out ex~
ponentially with distance from the solid surface.) (3) In

general a disturbance gains energy from the mean flow

<Pa@) is positive at the critical layer (where w=c) and

loses energy to the mean flow if [dd[<de ):[ <0.
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The general stability eriterions for inviscid compressible
flow give some insight into the effect of the inertial forces on
the stability, but they cannot be taken over bodily to the
real compressible fluid. Of course, if a flow is unstable in
the limiting case of an infinite Reynolds number, the flow is
unstable for a certain finite range of Reynolds number. A
compressible flow that is stable when B— «, however, is not
necessarily stable at all finite Reynolds numbers when the
effect of viscosity is taken into account. One of the objects
of the present paper is to settle this question.

On thebasis of thestability criterions obtained in reference 8,
some general statements were made concerning the effect. of
thermal conditions at the solid boundary on the stability of
laminar boundary-layer flow. It is concluded from physical
reasoning and a study of the equations of mean motion

that the quantity %(pg—;u) vanishes for some value of w>0
if (%) =0, that is, if heat is added to the fluid through the

solid surface or if the surface is insulated. If <%V> >0
i

and is sufficiently large, that is, if heat is withdrawn from the
fluid through the solid surface at a sufficient rate, the quan-

tity %(p%?) never vanishes. Thus, when <%)1§0’ the

laminar boundary-layer flow is destabilized by the action
of the inertial forces but stabilized through the increase of

kinematic viscosity near the solid surface. When (g_zf >0,
. 1

the reverse is true. The question of which of these effects is
predominant can be answered only by further study of the
stability problem in a real compressible fluid.

In the present paper this investigation is continued along
the following lines:

(1) A study is made of how the general criterions for
instability in an inviseid compressible fluid are modified by
the introduction of a small viscosity (stability at very large
Reynolds numbers). '

(2) The conditions for the existence of neutral disturb-
ances at large Reynolds numbers are examined (study of
asymptotic form of relation between eigen-values of ¢, «,
and R}.

(3) A relatively simple expression for the approximate
value of the minimum critical Reynolds number is derived;
this expression involves the local distribution of mean
velocity and mean temperature across the boundary layer.
This approximation will serve as a criterion from which the
effect of the free-stream Mach number and thermal con-
ditions at the solid surface on the stability of laminar
boundary-layer flow is readily evaluated. The question of

REPORT NO. 876—NATIONAL ADVISORY COMMITIEE FOR AERONAUTICS

the relative influence of the kinematic viscosity and the
distribution of p%) on stability would then be settled.

(4) The energy balance for small disturbances in the real
compressible fluid is considered in an attempt to clarify the
physical basis for the instability of laminar gas flows.

(5) In order to supplement the Investigations outlined
in the four preceding paragraphs, detailed ealculations are
made of the limits of stability, or the curve of « against I?
for the neutral disturbances for several representative cases
of insulated and noninsulated surfaces. The results of the
caleulations are presented in figures 1 to 8 and tables I
to IV. The method of computation of the stability limits is
briefly outlined in reference 8, although the calculations
were not carried out in that paper.

, g =

. Y %
.
8 M; A / /
=/

N

AN

| N/
-7 [/‘_ -7
1.3 A
IR/ r
// Mo 619
7 0 2595
/// / 50 2777
5 70 2952
.90 3785
10 3476
.30 3.825
2 3 4 5 & 7
« Jug o
we*

Fi1GURE 1.—Boundary-layer velocity profiles for insulated surface. Since o is taken cqual to

unity, the temperature profile is given by T'= Tr[Tx—(I—i—l;l M’q’)}w ";1 Mgt
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FiGURE 2.~Boundary-layer velocity profiles for noninsulated surface. Afy=0.70. Tiis the
ratio of surface temperature (deg abs.) to free-stream femperature (deg abs.). Inflection
more propounced and farther out inte fuid for T:=1.25 than for insulated surfzce (T;=1.10).
No infleetion for 71=0.70, 0.80, 0.90.

In the present investigation the work of Heisenberg
(reference 1) and Lin (reference 5) on the stability of a real
incompressible fluid is naturally an indispensable guide. In
fact, the methods utilized in the present study are analogous
to those developed for an incompressible fluid.

The present paper is concerned only with the subsonic
disturbances. The amplitude of the subsonic disturbance
dies out rapidly with distance from the solid boundary. In
other words, the neutral subsonic disturbance is an “eigen-
oscillation’ confined mainly to the boundary layer and exists
only for discrete eigen-values of ¢, «, and R that determine
the limits of stability of laminar boundary-layer flow. Dis-
turbances classified in reference 8 as neutral “supersonic,”
that is, disturbances such that the relative velocity between

335

the z-component of the phase velocity of such a disturbance
and the free-stream velocity is greater than the local mean
sound speed in the free stream, are actually progressive sound
waves that impinge obliquely on the boundary layer and
are reflected with change of amplitude. For disturbances
of this type the wave length and phase velocity are obviously
completely arbitrary (eigen-values are eontinuous), and these
disturbances have no significance for boundary-layer
stability.

When the free-stream velocity is supersonic (3f;>>1), the
subsonic boundary-layer disturbances must satisfy the re-

. — B — 1
quirement that u,*—e*< a,* or c>l_ﬂ—fo (for A,<1, e=0).

Novw, by analogy with the case of an incompressible fluid it
is to be expected that for values of ¢ greater than some
critical value of ¢y, say, all subsonic disturbances are damped.
Thus, when 1/,>>1, there is the possibility that, for certain
mean velocity-temperature distributions across the boundary
layer, neutral or self-excited disturbances satisfying the
differential equations of motion, the boundary conditions,

and also the physical requirement that c>1—ﬂ%f; cannot be

found. In that event, the laminar boundary flow is stable
at all Reynolds numbers. This interesting possibility is
investigated in the present paper.

2. CALCULATION OF THE LIMITS OF STABILITY OF LAMINAR
BOUNDARY LAYER IN A VISCOUS CONDUCTIVE GAS

In order that the complete system of solutions of the differ-
ential equations for the propagation of small disturbanees
in the laminar boundary layer shall satisfy the physical
boundary conditions, the phase velocity must depend on the
wave length, the Reynolds number, and the Mach number
in a manner that is determined entirely by the local distribu-
tion of mean velocity and mean temperature across the
boundary layer. In other words, the only possible subsonic
disturbances in the laminar boundary layer are those for
which there exists a definite relation of the form (reference &)

c=cla, R, 31

()

Since «, R, and 11 are real quantities, the relation (1) is
equivalent to the two relations

(12)
(1b)

e;=c:(e, B, 31>
c,-:ci(a, R, ;L{gg)

The curve ci(e, R, MY =0 (or a=a(R, A?)) for the neutral
disturbances gives the limits of stability of the leminar
boundary layer at a given value of the Mach number. From
this curve can be determined the value of the Reynolds
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number below which disturbances of all wave lengths are
damped and above which self-excited disturbances of certain
wave lengths appear in a given laminar boundary-layer flow.

In reference 8, it is shown that the relation (1) between the
phase velocity and the wave length takes the following form:

Ele, ¢, My)=F(2) 2

In equation (2), F(2) is the Tietjens function (reference 11)
defined by the relation

IR Ear

Fla)=14-d5 el
2 [ rrme [ 2o | a

3)

where P \
N1
z=(3%“— Ye—12) (4

and the quantity H;, is the Hankel function of the first kind
of order ¥%. The prime denotes differentiation with respect
toy. The function E(q, ¢, M%), which depends only on the

.6 —

Sy ;

| /
s {b} \_J/ e

ol A 2. .3 4 5 £
e

(b} Noninsulated surface. Mp=0.70.
FreURE 3.~Concluded,

asymptotic inviscid solutions ¢, and ¢, (section4 of ref ercnce:S)
and not on the Reynolds number, is defined as follows:

©11 §012/ ‘I‘B%z

P21 %2{‘{‘13{022
Tion’ FM"w con ’
Tl——i Iozcz 2% +13<P12

(?/1—yc)E(a:C>ﬂfoz) = (5)

o ' Tion+M"w comn

T]. _ﬂ{ozcz €522’ -+ Bens

where
B=a1—MZ(1I—c)?
ei= oY) (6)
1,7=1,2

and y: and y, are the coordinates of the solid surface and the
“edge” of the boundary layer, respectively.

The Tietjens function was carefully recalculated in refer-
ence 8, and the real and imaginary parts of the function

& (z) =*1%(2) are plotted in figure 9. (The function ®(z) is

found to be more suitable than F(2) for the actual calcula-
tion of the stability limits.)
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Lo T The inviscid solutions ¢, and ¢; were obtained as power
{ series in «? as follows (section 6 of reference 8):
f
] @
! J o1 (yrat,e, M) = (w— ) a?"h,, (y5e,00?) (")
.8 : n=0
| % : -
E 992(y;a2;c)21 02)2(‘w_c)zcaznk2ﬂ+l(y;cyﬂf02) (8)
1 -
& } / where for n=1 -
5 '1
T " tgie M= [ o4 |y [ “" O a(yie, M)y
X f ©)
4 and
\ // fl0=1.0
\ and for n>1 .
v T
z | konia (y,'0,31§2)=f [m—
3¢ | dy [P by My (0)
and -
¥
o / 2 . ° z 5 ke = [ | g4 |y
Fraure 8§.—Critical temperature ratio T1,, for stability of laminar boundary layer against I
Mach number 3. The lower limit in the integrals is taken at the surface
merely for convenience. Yhen y>y., the path of integra-
£6 .8 tion must be taken below the pomt y=y,. in the complex
y-plane. The power series in o is then uniformly conver-
o4 _7\\ gent for any finite value of a.
™, At the surface, the inviscid solutions are readily evaluated
a2 .6 a - B!
\ —d_-$:(z) P11 ¢
. on’ =y
20 .5 \ » 0o =0 (11)
1 ' )
L8 4 / \ \ o’ = -z (T, —2My2e?)
\\.-%r(z) At the “edge’ of the boundary layer, the inviscid solutions
L6 .3 ; . 7 .
/ are most conveniently expressed as follows:
] N
i At N o= (1) 32 @ Hhle, M)
¢(z)  #fz) / 3 -
e N\ pu= (1) 25 o EKanpa(e, M)
(12
-L[ 1 —e I3
o o / N o' =(1—0) [ LT 5 o, e, 20
30y __
i on'=(1—0) [—ﬁ%ﬂ] > @K, M)
g -/ - n=0 J
where .
=Z 172 ca AT2) 3
-H25 (C;JIO ):hZH(yZ:IC)JIG )
H0=1.O
_.3 .,
Kon_‘_l(c ‘[02)=kon_‘.;(y->' Jf()?)
-1
-4 Ho e M= = [ b ety 09)
. —AME(l—e)* ! o 5
20 24 28 32 36 40 47 48 Konle,Mo')= l: —c)* Fanss (yg’c’M")
=z
FiGUsE 9.—The functions ®;(z) and ; (2}, Ky=1.0 J
883026—50— 23 .
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With the ald of equations (11), the expression for | Then,
4.2 1 - ,
E (o, ¢, M?) can be rewritten as follows: @(z)_ —(1+N) l_é%{aii)w) a7
r r A
E(a,c,ﬂfoz)=1 _{_};\ ol W (o _;’3‘"—22) (14) | where s
¢ ’ y +1 t [ (%
Wy’ (@20" ~+ Bear) + ¢ (12" + Bera) u—{—w—l—{- T1 <¢fz +ﬁsﬂfz> - (18)
where .
4 — i 1 1v n 7 H o
)\<C)=Z£{1 <y;,,,y1)_1 (15) Equation (17) is equivalent to the two real relations
& _M_ o 19
The relation (2) between the phase velocity and the wave i(z)_(l—!-)\u)hi—)\?zﬁ - (19)
length is brought into a form more suitable for the calculation , \
of the stability limits by making use of the fact that for real S @)= (1+N) w1+ u) + 1 (20)
. . —r . ) r T (1+)\u>2+7\2v2
values of ¢ the imaginary part of E («, ¢, M,?) is contributed ,
largely by the integral K,(c, 44%). (The procedure to be . - o .
followed is identical with that used by Lin in the limiting | The real and imaginary parts of ®(2) are plotted against z in
. . . figure 9.
case of the incompressible fluid (reference 5, part III).)
Define the function @(z) by the relation The dominant term in the i imaginary parb of the right- hand
’ R T ‘ side of equation (18), which involves K, (¢, A1), is extracted
B(z) = 1 , o (16) by means of straightforward algebraic transformations. Re-
1—F(z) Iation (18) becomes

1 — i1 N @ ’ T
V1= ﬂfg 5)12 -M?*(1—¢)® <1—Za2"’Z\T Za2n+1N2n+I

u-{—iz;=%1—c <K1 )+<1 = Hﬂ) T - (21)
‘ (1 p3 a2n112,,)+ l—(fl—j—g)z:—‘f)— (aHI =35 aHAy, +1>
where
A’VzEHz

and for n=3 . o , .

N,=KH, —K, (22a)
and

M,=HH, .—H, ~ (22b)
When ¢ is real,

mwi;,l"l. P. K,

for those values of @ and ¢ that occur in the stability calculations. (This approximation is justified Jater in appendix A} The
imaginary part of the integral Ki(c, 14,%) is readily computed. It is found that

2 ?
I.P.K(C;Z‘[(Jz) I (—QUITG'—):” [ng‘/ E)]w=c

i (o =) (23)

Now A(e) is generally quite small, therefore ®,(z) can be t-aken equal to »{c) and ®.(z) can be taken equal to % as a
zeroth approximation. From equations (19) and (20), when ¢ is real,

O (o e _TWC_To :
@f (2 ) v TI (wof)z ,wL T (24)
21O =3,0 (20 (25)

By equation (24), 2@ is related to ¢ with the aid of figure 9; and by equation (25), »‘” is also related to ¢. The quantity «®
is connected with ¢ by means of the identity
2w\
oB= Ty (%) | (26)

and the corresponding values of « are obtained from equation (21) (slightly transformed) by a method of successive
approximations. Thus

A—Af2({—ea)2 @ w
(l_asz) Llﬂ’c()%f)_ (1_2 a?* N, _Z a2n+1N2n+1]

T =M (l—o)

/1 2
{(u—L) —-RZ=2 a2 My, + T—o) <aH1 Z oM ):I

- (27)
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where

w e
==
Ty

R.P. <KL+£T,‘C>
1

{The symbols 3/, and N now designate the real parts of the
integrals 1/; and &) The iteration process is begun by
taking a suitable initial value of @ on the right-hand side of
equation (27). The methods adopted for computing these
integrals when the mean velocity-temperature profile is
known are deseribed in appendixes A to C.

For greater accuracy, the values of z and « for a given real
value of ¢ are computed by successive approximations. From
equations (19} and (20},

(14N

(I,t(n-%l)(z(n-!-l)) =(l+ )\u("’)2+ N (28)
(D) g (4D (pcaeny | (LEAE)IENDTT N 9
U=,z )[u+mu+mm0 e (29

The value of v is always approximated by relation (24).

Curves of wave number against Reynolds number for the
neutral disturbance have been calculated for 10 representa-
tive cases (fig. 4), that is, insulated surface at Mach numbers
of 0, 0.50, 0.70, 0.90, 1.10, and 1.30 and heat transfer across
the solid surface at a Mach number of 0.70 with values of the
ratio of surface temperature to free-stream temperature 77 of
0.70, 0.80, 0.90, and 1.25. (It is found more desirable to base
the nondimensional wave number and the Reynolds number
on the momentum thickness 8, which is a direct measure of
the skin frietion, rather than on the boundary-layer thickness
§, which is somewhat indefinite.)

In figure 5 the minimum critical Reynolds number
R, 2 or the stability limit, is plotted against Maeh num-

ber for the insulated surface; and in figure 6(a) Re“min is
plotted against T} for the cooled or heated surface at a Mach
number of 0.70. The marked stabilizing influence of a with-
drawal of heat from the fluid is clearly evident. Discussion
of the physical significance of these numerical results is
reserved until after general criterions for the stability of the
laminar boundary layer have been obtained.

3. DESTABILIZING INFLUENCE OF VISCOSITY AT VERY LARGE
REYNOLDS NUMBERS; EXTENSION OF HEISENBERG'S
CRITERION TO THE COMPRESSIBLE FLUID

The numerical caleulation of the limits of stability for
several particular cases gives some indication of the effects
of free-stream Mach number and thermal conditions at the
solid surface on the stability of the laminar boundary layer.
It would be very desirable, however, to establish general
criterions for laminar instability. For the incompressible
fluid, Heisenberg has shown that the influence of viscosity is
generally destabilizing at very large Reynolds numbers
(reference 1). His criterion can be stated as follows: If a
neutral disturbance of nonvanishing phase velocity and
finite wave length exists in an inviseid fluid (R— ) for a
given mean velocity distribution, a disturbance of the
game wave length is unstable, or self-exeited, in the real fluid
at very large (but finite} Reynolds numbers.

The same conclusion can be drawn from Prandtl’s discussion
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of the energy balance for small disturbances in the laminar
boundary layer (reference 12).

Heisenberg’s criterion is established for subsonie disturb-

ances in the laminar boundary layer of a compressible fluid
by an argument quite similar to that which he gave originally
for the incompressible fluid and which. was later supple-
mented by Lin (reference 5, part IILI). At very large
Reynolds numbers, the relation (1) between the phase
velocity and the wave length can be considerably simplified.
When A is finite and e does not vanish, [z[>>1 at large
Reynolds numbers. The asymptotic behavior of the Tietjens
function F(2) as [z]— « is given by (reference 5, part I)

—_ eri/‘i

(y1—y) F(2) =T (30)
-\/&;;C
and the relation (1) becomes o
 wift
=y Ele, ¢, M) =Ei(a ¢, Moﬁ)=7‘% @
—\ azc .

where E(«, ¢, M%) i1s given by equation (14).
Suppose that a neutral disturbance of nonvanishing

the inviscid fluid (Iimiting case of an infinite Reynolds
number). The phase velocity ¢ is a continuous function of R,
and for a disturbance-of given wave number «, the value of ¢
at very large Reynolds numbers will differ from ¢, by & small
increment Ac. Both sides of equation (31) can be developed

-
wave number a,=%~ and phase velocity ¢,>1 ~% exists in
$ [

in a Taylor’s series in Ae, and an expression for Ac can be

obtained as follows:

B (a0, M) =Fi( e M)+ (2), |, det ..
— [1+0(a)] (32)
=g 1o ,
‘\ &y Z Cs
The boundary condition
e’ (s, Css 3102)—{"[339922 (e Csy A—‘-{DZ):O (33)

must be satisfled for the inviscid neutral disturbance, and

the function E(as, ¢, 81;%) vanishes (equation (14)). Recog-
nizing that B
OE, 1 .
<ac Cs %5 \/ R
ay —Cs
Ve,
reduces equation (32) for Ae to the form
_e‘ri/4
o= e (34)

\/ B o5
= Ve, o oc 6g, <s

e, , :
A Jey, o Ty @na’ (e, €3, Mo®) +Baora (e, €5, 1%

From equation (14),

(35)
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By equations (12) and the boundary condition (33), the quantity (%—‘?)
/Cs. s

100 D™ B! (M) 4 VT T=0) 5 o i M) FI=

is evaluated as follows:

—Mf(l—c)® 1
M=) (1—c,) =

a; IXOE (C”Z‘fo?}

?E) _ ¢
oc cs."‘s_ Tl

n=

‘O
where the primes now denote differentiation with respect to ¢. For small values of ¢; and «,, the quantity ( %)
L OC S

approximately by the relation

].—'Cs) ZO{ QR-H'H)n(Cs,Z‘-IO )+ '\ll—ﬂfoz(l—Cg Z&sganﬂ I(CSaJ-[O )

(36)

is given

_6_E£> __c_f[ 2—My*(1—c,)? N ]
ac cs,“s— Tl —63)3'\[1 ﬂ[@z(]— 3)2 ! KI (CS!JIO) (37)
and the expression for Ac is S ,
e T P 1 A S e S
—AM2(1— L B
Vo R o220l o = oK (e M) (38)”
Evaluation of the integral K¢, My*) yields the following result:
> w
Kyle, M) = — et s | 22 () |t e—im0) (39)

Since the quantity [(_Z% (%—;):] B vanishes (reference 8) differentiation of equation (39) gives

K\ (ca, M) :w%fr@{ e [ 5 %)l:i)z (0 ¢o—ia) +0(1) o)

Thus, K,/{(c,, M is appmximately real and positive for

small values of ¢, With ¢, >1— j\j , 1. P. Ac must also be

positive (equation (38)); therefore, a subsonic disturbance
of wave length \;>20, which is neutral in the inviscid com-
pressible fluid, is self-excited in the real compressible fluid
at very large (but finite) Reynolds numbers.

In reference 8, it was proved that a neutral subsomc
boundary-layer dlsturbance of nonvanishing phase velocity
and finite wave length exists in an inviscid compressible fluid

only if the quantity (—% <p %) vanishes for some value.of

w>1—
bUbSOIllC d}stmbanus also exist in the fluid, and the laminar
boundary layer is unstable in the limiting case of an infinite
Reynolds number. By the extension of Heisenberg’s
criterion to the compressible fluid, it can be seen that, far
from stabilizing the flow, the small viscosity in the real fluid
has, on the contrary, & destabilizing influence at very large
Reynolds numbers. Thus, any laminar boundary-layer
flow in a viscous conductive gas for which the quantity

- If this condition is satisfied, then self-excited

c_fd? (p %) vanishes for some value of w>1 - 7‘1[— is unstable at
. 7,

sufficiently high (but ﬁnito) Reynolds numbers. ]

Unless the condition - & ( du) Oforsomevaluew>1— :117

1]

is satmﬁed all subsonic chsuubancos of finite wave length are
damped in the limiting case of infinite Reynolds number, and
the inviscid flow is stable. Since the effect of viscosity is
destabilizing at very large Reynolds numbers, however, a
laminar boundary flow that is stable in the limit of infinite
Reynolds number is not necessarily stable at large Reynolds

numbers when the visecosity of the fluid is considered.

(See fig. 4 (1)) In fact, for the incompressible fluid, Lin
has shown that every laminar boundary-layer flow is un-
stable at sufficiently high Reynolds numbers, whether or not

the xortmt\‘ gmdlentfZ ; vanishes (reference 5, part IID).

In order to settle this question for the compressible fluid in
general terms, the relation (1) between the complex phase

velocity and the wave length at large Reynolds Qum ers

must now be studied for flows in which the quantity i <p f{?)

does not vauish for any value of w>1 ~ 17
. . 0
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4. STABILITY OF LAMINAR BOUNDARY LAYER AT LARGE
REYNOCLDS NUMBERS

The neutral subsonic disturbance marks a possible
“boundary” between the damped and the self-excited
disturbance, that is, between stable and unstable flow.
Thus, the general conditions under which self-excited dis-
turbances exist in the laminar boundary layer at large
Reynolds numbers can be determined from a study of the
behavior of the curve of « agamst R for the neutral disturb-
ances. Yhen the mean free-stream velocity is subscnic
(My<<1), the physical situation for the subsonic disturbances
at large Reynolds numbers is quite similar to the analogous
situation for the incompressible fuid. The curve of «
against B for the neutral disturbances can be expected
to have two distinet asymptotic branches that enclose a
region of instability in the aR-plane, regardless of the local
distribution of mean velocity and mean temperature across
the boundary layer. When the mean freestream velocily
is supersonic (3,>1), the situation is somewhat different;
under certain conditions (soon to be defined)} a neutral or

a self-excited subsonie disturbance { e>1 ———) cannot exist

at any value of the Reynolds number. TFor this reason, it
is more convenient to study the case of subsonic and super-
sonic free-stream velocity separately.

A. SUBSONIC FREE-STREAM VELOCITY (M<})

The asymptotic behavior at large Reynolds numbers of
the curve of « against B for the neutral disturbances is
determined by the relations (19) to {22) between «, K, and ¢
for real values of ¢. For small values of @ and ¢, these rela-
tions are given approximately by

) 2 W
o(c) =, (z}—_al% ¢ (5,)3 [dy <u7>l (41)

'u:{i)r(‘z) (42)
TI.TS = 3 R
=17 (43)
wiel ——
a= ’}1@ AT IR (44)

As R— o, either z— o or z remains finite while both o and
¢ approach 0. These two possibilities correspond to two
asymptotic branches of the curve of o against R.

Lower branch.—If z remains finite as B>, then ¢—0;
and by equation (41), ®,(z)->0. Therefore, 2—2.29 while
u—2.20 (fig. 9). From equations (43) and (44}, along the
lower branch of the curve of @ against R for neutral stability

(w, P (1—AL323" 1
T E -

L,
w1315

R= (45)

c~2.29 (46)

and e—0 at large Reynolds numbers (fig. 4 (I)).

Upper branch.—Along the upper branch of the curve of «
against R for neutral stability, 2=« and

8,(2) = — mw e T2 I:_d_( )] a’ (47)
: T W)Ly V2 23 [ou

V5

If the quantlty

while v—1.0 (fig. 9 and equation (42)).
dy< ) does not vanish for any value of w>0, then by

equatlon (47) ¢ must approach zero as z—=. Along this
branch,
(w)*  (=AL7)" 1 -
R= ST {I: < ):! i ) (48)
dy
T, o . - (49) -

'LUI, '\I ]. ""‘:L[gz

and «—0 at large Reynolds numbers (fig. 4 ([)).
On the other hand, if & <T) vanishes for some value of

w=¢,>0, then by equation (47) c—¢, and a—a, as both z and

R approach «. Now,
(). Aw(s Dl il (7)]-
d w''ye—e (50)

T_l-wl’fml

If )j] does not vanish. (see appendix D), then by

equatlons (44) and (47), along the upper branch of the curve
of « against R for the neutral disturbances,

{wy")®

1 1 1 . .
RzZn—gTIO'Z* % K’)] ))2 a'_cs (C__'é;)'i'" e (51}
AVIVA'S!
05"‘1% V1= (1—e)? (52)

and e—e7# 0, a—>a,70 at large Reynolds numbers (fgs. 4 (k)
and 4 (1)). I [j—z <%>:l vanishes, the relation (51) i

Yy 1 )
replaced by : S

2(w,") 0 1 1

B~Grom {L ]} pr (cz—cz)? 63

which reduces to the relation obtained by Lin in the limiting
case of an incompressible fluid when 1/,—0, the solid bound-
ary is insulated, and w’’=0 for some value of w=c,>0.
(See equation (12.22) of reference 5, part II1.) T

If the quantity d%(%) vanishes af the solid boundary
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(that is, for w=0), it can be shown from the equations of

motion (appendix D) that [(—{? (-T)] is always positive—
1
except in the limiting case of an incompressible fluid. For
.o d w’
small values of y, the quantities & <_T_> and p are broth
posit'ne and increasing. F01 large values of y, however,

T—%O physically; therefore & 7 must have a maximum, or

&y <7>=0 for some value of w>0, and this case is no

different from the general case treated in the preceding
paragraph. In the limiting case of an incompressible fluid,

2

. ¢ .
when %’/ vanishes at the surface, w,” =1 "V"—F since w,’’"’
? 2{10,")?

always vanishes in this case. From equation (48) the rela-
tion between « and R along the upper branch of the 11eut1a1
stability curve is therefore

20w} 1 1 ,
Rz#mzﬁ o -(54)

T

which isidentical with equation (12.19)in reference 5 part I11.
Thus, regardless of the behavior of the quantity & < )

regardless of the local distribution of mean velocity and mean
temperature across the boundary layer—when 34,<1, the
curve of « against R for the neutral disturbances has two
distinet branches at large Reynolds numbers. From physi-
cal considerations, all subsonic disturbances must be damped
when the wave length is sufficiently small (a large) or the
Revnolds number is sufficiently low. Consequently, the
two branches of the curve of o against R for the neutral dis-
turbances must join eventually, and the region between
them in the aR-plane is a region of instability; that is, at a
given value of the Reynolds number, subsonic disturbances

with wave lengths Iying between {wo critical values \, and

ne (@ and ey) are self-excited. Thus, when My<1, any lami-
nar boundary-layer flow in a viscous conductive gas is unstable
at sufficlently high (but finite) Reynolds numbers.

The lower branch of the curve of « against R for the
neutral disturbances is virtually unaffected by the distribu-

tion of diy <%> across the boundary layer, but for the upper
I
branch the behavior of the quantity di (wT) is decisive.

When —— o < ) 0 for some value of w=¢,>0, the neutral

subsonic disturbance passes continuously into the charac-

teristic inviscid disturbance c¢=c¢, and a=a; as B— .-

This result is in accordance with the results obtained in
reference @ for the inviscid compressible fluid and is in agree-
ment with Heisenberg’s criterion. In addition all subsonic

disturbances of finite wave length XA >, _2r {and nonvanish-

ing phase velocity 0<e,<l¢;) are self-exatgd in the lHmiting
case of infinite Reynolds number. On the other hand, when
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dy T) does not vanish for any value of w>0, then except for

the “singular’” neutral disturbance of zere phaqo veloeity
and infinite wave length (¢=0 and «=0), all disturbances
are damped in the inviscid compress1blc fluid.  This
singular neutral disturbance can be regarded as the limiling
case of the neutral subsonie disturbance in a real compressi-
ble fluid as F— .

B. SUPERSONIC FREE-STREAM VELOCITY (Af>1)

When the velocity of the free stream is supersonie, the
subsonic boundary-layer disturbances must satisfy not only
the differential equations and the boundary conditions of tbc

problem but also the physical requirement that ¢,>1-— i [
0

The asymptotic behavior at large Reynolds numbers of the
curve of « against R for the neutral subsenic disturbances
is determined by the approximate relations {41} to (44), \&i{h

the additional restrietion that c>1—ﬁ As e—1— f»,
A, A,

a—0 by equation (44}; therefore, B— o by cquation (43).
The corresponding value (or values) of z is determined by
equation {41) as follows:

&.(2) =vrr(c) =y <1 —317)

_,—_wwl <1 1[0)[:
(w

bk d:t/ ﬂw =35 (09)

Now from physical considerations, C% (%) < 0 for large

‘values of 4. Therefore, if (—Z—/ <%)= 0 (changessign) for some

value of w=¢;>1 —ﬂ%, then,in general, [cg/ <?§T>:L-1——1->0
Mo

and (1)1-(2);_1 1 <0 (equetion (55)). From figure 9 it can be
g

seen that in this case there is only one value of z (2, say)
corresponding to the value of ®,(2) given by equation (55).
From equations (42) to (44) along the lower branch of the
curve of « against R for the neutral disturbances,

1 76(@01/)22 3 1

(56)
(1 Mo) : :

zw'( ﬂlfo) [, _<1__uo) (57)

@ T,
The

upper branch of the curve in this case is given by equations
Vi ’

(51) and (52), or by equations (53) and (52) if [éij, C%):l

19

and ¢c—1— 1% at large Reynolds numbers (fig. 4(k)).

vanishes, with ¢—¢;>1— 1]} and a—>a,;70.
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d 1
(T) vanishes for w=1— 7 then z—» as R—w
anng the upper branch of the curve of « against R for the

neutral disturbances, and ®.(z)— Now a—( as

-\/Qa f—j é
c—el—ﬂ; in this case also (equation (57) with #%;=1.0) so
that

2w, )12 A2

1
TR T T E N &
- {5 )]

Along the lower branch of the curve of « against R at large
Reynolds numbers, «, B, and ¢ are connected by equations
(56) and (57), with 2,=2.29 and %,=2.29. In spite of the

fact that (% (%)=0 for w———l—ﬂ%): a neutral sonic disturb-

R~

(58)

ance (c———l—jlf) of finite wave length does not exist in
~ Q.

the inviscid fluid unless K;(c)= f; [@TTCV_MOQ} dy is

positive. (See section 10 of reference 8.) Calculation
shows that K (¢) is almost always negative (equation (40));
therefore, in general, the sonic disturbance of infinite wave
length {(¢=0) with constant phase across the boundary
layer exists only in the inviscid fluid (R—«).

If diy (T—%—) does not vanish for any Vzdue of wz 1—3510; it

r
is certain that I:%f %):L:c_]_L<O and by equation (55)
®,(2),_,_1 >0. When
T My

values of z (z; and z;, say, with z;>>2,} corresponding to the
value of ®,(z) given by equation (55). (See fig. 9.} Along
the two asymptotic branches of the curve of « against R for
the neutral disturbances, «, K, and ¢ are connected by rela-
tions of the form of equations (56) and (57), with z and u
replaced by 2z, and u,, respectively, along the lower branch
and by z; and u,, respectively, along the upper branch. At
a given value of the Mach number, the value of v,_1 is con-

M
trolled by the thermal eonditions at the solid surface. (See
0.580,

section6.) WWhen these conditions aresuch thats,_ 1 =
M

then z,=—2;, and the two asymptotic branches of the
curve of « against R for the neutral disturbances coincide.
When »,_1 20.580 (approx.), it is impossible for a neutral

2y
or a self-excited subsonic disturbance to exist in the laminar
boundary layer of a viscous conductive gas at any value of

the Reynolds ntmber. In other words, if »_1 =0.580
3‘[‘

1 <0.580 (approx.}, there are two
Me

(approx.}, the laminar boundary layer is stable at all values
of the Reynolds number. (Of course, in any given case, the
eritical conditions beyond which only damped subsonie dis-
turbances exist can be calculated more accurately from the
relations (28) and (29). See section 5 on minimum critical
Reynolds number.)

The preceding conclusion can also be deduced at least
qualitatively, from the results of a study of the energy
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balance for a neutral subsonic disturbance in the laminar
boundary layer. A neutral subsonic disturbance can exist
only when the destabilizing effect of viscosity near the solid

surface, the damping effect of viscosity in the fluid, and the

energy transfer between mean flow and disturbance in the
vicinity of the inner ‘““critical layer” all balance ouf to give
a zero (average) net rate of change of the energy of the dis-
turbance. (See Schlichting’s discussion for incompressible
fluid in reference 4.) In reference 8 it is shown that the sign
and magnitude of the phase shift in «* through the inner
“critical layer” at w=c¢ is determined by the sign and magni-

tude of the quantity ’:% EUT—)] . The corresponding
w=e

apparent shear stress 7%= —p* 4*p*', which is zero for w<le

in the inviscid compressible fluid, is given by the following
expression for w>>¢ (reference 8): .

®__  x )2 & Tcz._. _Ci Qil
=) 57 w2 (7) L

If the quantity l:(% (%):I is negative, the mean flow ab-

(59)

sorbs energy from the disturbance;if I:a% <%)] is positive,

energy passes {rom the mean flow to the disturbance. In
the real compressible fluid, the thickness of the inner eritical

layer in which the viscous forces are important is of the order

—Z%Em, and the phase shift in #*’ is actually brought about

(=3

by the effects of viscous diffusion <of the quantity p 7 )

through this layer. ,

As shown by Prandtl (reference 12), the destabmzmc ef—
fect of viscosity near the solid surface is to shift the phase of
the “frictional” component u,*" of the disturbance velocity
against the phase of the “frictionless™ or “inviscid” eompo-

nent U, in a thin layer of fluid of thlckness of the order of
1

\ acg

v,* 1s of the order of l b

By continuity, the associated normal component

41
shown in section 1 of reference 8 that for large values of «R
the “frictional” components of the disturbance_also satisfy

&/

the continuity relation ba? + %Z 0 in the compress-
ible fluid.) The ecorresponding apparent shear stress
¥ = —p ¥y ¥ 0¥ is given by the expression

e E(50] [

But from equations (11)

uma

o (8D)

T,
A VA

,}_ﬁ
T e

(60)

- . L.
uma \ f;‘E (It was
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and

nreaR S [ (6

C_.

"1
Since the shear stress associated with the destabilizing
effect of viscosity near the solid surface and the shear siress
near the critical layer act roughly throughout the same

region of the fluid, the ratio of the rates of energy trans-
13
ferred <approximate1yf0 T ’) by the two physical

processes is . o

Ec*i; * mwc ( ) A0
EI* - 7'1* N2 Tl (wc/)s d?/

=2l [ ©3)
where

R

~ NaVc (w1,)2

s
1f the quantity (—% <%) is negative and sufliciently large when

w=r¢,, say, then the rate at which energy is absorbed by the
mean flow near the inner “critical layer” plus the rate at
which the energy of the disturbance is dissipated by viscous
action more than counterbalances the rate at which energy

passes from the mean flow to the disturbance because of the .

destabilizing effect of viscosity near the solid surface. Con-
sequently, a neutral subsonic disturbance with the phase
velocity e=e¢, does not exist; in fact,-all subsonic disturb-
ances for which c=¢; are damped. When AL;<71, there is

always a range of values of phase velocity 0=e=¢, for
al-

which the ratio %l given by equation (63), is small enough
j N ¥

for neutral (and self-excited) subsonic disturbances to exist
for Reynolds numbers greater than a certain critical value.
When ﬂ[0>1 however, because of the physical requirement.

thate¢>1— "U’ >0, the p0551b111ty exists that for certain ther-
mal conditions at thesolid surface the quantity [d— )]

is always sufficiently large negatively (and therefore is

sufficiently large) so that only damped subsonic dlstulbances

r
exist at all Reynolds numbers. Of course, if d% (%1—) vanishes
for some value of fwgl—ﬂ—}-, it is certain that v(e)<{0.580
1]

for some range of values of the phase velocity 1—j%§c'_§éa.
0

In that case, neutral and self-excited subsonic disturbances
always exist for R>R,,  and the flow is always unstable at
sufficiently high Reynolds numbers, in accordance with
Heisenberg’s criterion as extended to the compressible fluid
(section 2).
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A discussion of the significance of these resulls is reserved
for a late; section. (section 6) in which the behavior of the

(T) will be related directly to the thermal

condltlons at the solid surface and the frec-stream Mach
number.

quantltg

5. CRITERION FOR THE MINIMUM CRITICAL REYNOLDS
NUMBER

The object of the stability analysis is not only to deter-
mine the general conditions under which the laminar bound-
ary layer is unstable at sufficiently high Regnolds numbers
but also, if possible, to obtain some simple criterion for the
limit of stability of the flow (minimum ecritical Reynolds
number) in terms of the loeal distribution of mean velocity
and mean temperature across the boundary layer. For plane
Couette motion (linear velocity profile) and plane Poiseuille
motion (parabolic velocity profile) in an incompressible fluid,
Synge (reference 13) was able to prove rigorously that a
minimum critical Reynolds number actually exists below
which the flow is stable. His proof applies also lo the
laminar boundary layer in an incompressible fluid, with only
a slight modification (reference 5, part T11). Such a proof is
more difficult to give for the laminar boundary layer in a
viscous conductive gas; however, the existence, In general,
of & minimum critical Reynolds number ecan be inferred
from purely physical considerations. A study of the energy
balance for small disturbances in the laminar boundary layer
shows that the ratio of the rate of viscous dissipation Lo the
rate of energy transfer near the critical layer is 1/R for a
disturbance of given wave length while the energy transfer
assoclated with the destabilizing action of viscosity near the
solid surface bears the ratio 1/+/F to the cnergy transfer near
the critical layer. Thus, the effects of viscous dissipation
will predominate at sufficiently low Reynolds numbers and
all subsonie disturbances will be damped. The two distinet
asymptotic branches of the curve of « against R for the
neutral disturbances at large Reynolds numbers must join
eventually (section 4) and the flow is stable for all Reynolds
numbers less than a certain critical value.

An estimate of the value of R, , which will serve as &
stability criterion, is obtained by taking the phase veloeily ¢
to have the maximum possible value ¢ for a neutral subsonic
disturbance; that is, for ¢>>¢; all subsonic disturbances are
damped. This condition is very nearly equivalent to the con-
dition that «R be a minimum, which was employed by Lin for
the case of the incompressible fluid {p. 285 of refercnce 5,
part IIT). The condition e¢=¢, occurs w th ®,(2) is a maxi-
mum; that is, when ®,(2)=0.580, 2,=3.22, and ®,(z,) =1.48
(fig. 9). The corresponding value of c=¢q can be caleulated
from the relations (19) to (22). Neglecting terms in X2
(M is usually very small) and taking #=1.50 gives

@,(2) ~[1—2(e)]o(c) (64)
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where
1(¢) == — v 65
He)=—m T (w/)3 dy ) ( D)
and
ORI (yg_y‘) —1 (66)

It is only necessary to plot the quantity (1—2)\)e against ¢
for a given laminar boundary-layer flow and find the value
of e=¢y for which (1—2M»=0.580. The corresponding value
of R is determined from the relation

R=[T(e) 5w (2 (67)

and this value of «R is very close to the minimum value of
aR. A rough estimate of the value of & for e=¢, is given by
the following relation {equation (27)):

a=w ¢y 1 — A3 (1 —e)? (68)

This estimated value of « is, in general, too small. The fol-
lowing estimate of R, , is obtained by making an approxi-
mate allowance for thls discrepancy and by taking round

numbers:
25[T(cq)]" wy’

ber, . T 7 = = 69
e = 1) )
or
950 - (Dw)
o \ f——— (70)
Tmin et V1= (1 —eo)?

For zero pressure gradient, the slope of the velocity profile

at the surface ow is given very closely by (appendix B)
.0n

bw)
dw a’? ip
(37)=
_0_.3.32
=7
and
uo
é
Vs =(0.6667
Therefore
6 [T(co) '™

e 71
Bt ™ T ey A= B (=) (1)

The espression {71} is useful as a rough eriterion for the
dependence of Ry on the local distribution of mean

velocity and mean temperature across the boundary layer.

It is immediately evident that B, > when c0—>1—ﬂil,-
Tmin [

When [(1—2X) ﬂ,;:l_i = 0.580, the laminar boundary layer is

M

stable af all values of the Reynolds number. (This condition

883026—50——24
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is an improvement on. the stability condition »
T3
(approx.) stated in section 4.) ‘

In the following tables and in figures 5 and 6 (a) the esti-
mated values of Re, _ given by equation (71) can be com-
pared with the values of Ry, . taken from the calculated
curves of «g against K, for the neutral disturbances. For
the insulated surface, the values are

Re__ © Re |
Afs Ce T(Cs) Tmin eTmin

est.} (fg. 9
0 0. 4186 1.6000 185 1%
.50 .2 1.0408 170 136
.10 -4600 14782 14 126
.0 .4830 1.1254 129 115
1.10 . 5138 1.1803 109 104
1.38 L5450 1.2406 92 9Z

[

For the noninsulated surface when 3/;=0.70, the values are -

Re Ry

T e Tes) Srmin Tmin
{est) (fg. 4
0.7 0.1872 0.7712 537 | s
-%0 L2619 L8716 1163 1410
‘%0 “3308 “gs62 524 523
125 slod 1,149 89 63

The expression (71) for Ry, . gives the correct order of
magnitude and the proper variation of the stability limit
with Mach number and with surface temperature at a given
Mach number.

The form of the eriterion for the minimum eritical Rey-
nolds number {equation (71)) and the results of the detailed
stability calculations for several representative cases (figs. 3
and 4) show that the distribution of the produet of the

density and the vorticity pg across the boundary layer

largely determines the limits of ;tablhty of laminar boundary-
layer flow. The fact that the “proper” Reynolds number
that appears in the boundary-layer stability caleulations is
based on the kinematie viscosity at the inner critical layer
(where the viscous forces are important) rather than in the
free stream also enters the problem, but it amounts only to
a numerical and not a qualitative change when the usual
Reynolds number based on free-stream kinematic viscosity
is finally computed. Whether the value of R, , for a

given laminar boundary-layer flow is larger or smaller than
the value of Ry, . for the Blasius flow, for example, is

determined entirely by the distribution of pgl) across the

boundary layer. Ii the quantity & ( >1s negative and

large near the solid surface so that the quantity (1—2\)»(c)
reaches the value 0.580 when the value of e=¢; is less than
0.4186, the flow is relatively more stable than the Blasius

1 =0.580
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flow. If the quantity d—% <p %) is positive near the solid

surface, so that (1—2))»{c)=0.580 when w (or ¢)>0.4186,
the flow is relatively less stable than the Blasius flow. Thus,
the question of the relative influence on Ry, , of the kine-

matie viscosity at the inner critical layer and the distribution
of p g—;) across the boundary layver, which remained open in

the concluding discussions of reference 8, is now settled.
The physical basis for the predominant influence on

Ry, . of the distribution of p %U across the boundary layer

is to be found in a study of the energy balance for a subsonic
boundary-layer disturbance (section 4). The distribution of

g, determines the maximum possible value of the phase
velocity ¢, or the maximum possible distance of the 11111@1
eritical layer from the solid surface for a neutral subsonic
disturbance. The greater the distance of the inner critieal
layer from the solid surface, the greater (relatively) the rate
of energy absorbed by the mean flow from the disturbance
in the vieinity of the critical layer (equations (61) and (62)).
When ¢, is large, therefore, the energy balance for a neutral
subsonic disturbance is achieved only when the destabilizing
action of viscosity near the solid surface is relatively large or,

. 1
in other words, when 7
]

Vo

VCO

= ¢/ is large and the Reynolds

number Ry, which is very nearly equal to B, ,is correspond-
ingly small. On the other hand, when ¢, is small and the
inner critical layer is close to the solid surface, the rate at
which energy is absorbed from the disturbance near the
critical layer is relatively small and the rate at which energy

passes to the disturbance near the solid surface, which is of

the order of —1_——__}?; is also relatively small for energy bal-
a2 : .
Ve
ance; consequently R,  is large.

6. PHYSICAL SIGNIFICANCE OF RESULTS OF STABILITY
ANALYSIS

A. GENERAL

From the results obtained in the present paper and in
reference 8, 1t is elear that the stability of the laminar bound-
ary layer in a compressible fluid is governed by the action of
both wviscous and inertia forces. Just as in the case of an
incompressible fluid, the stability problem cannot be under-
stood unless the viscosity of the fluid is taken into account.
Thus, whether or not a laminar boundary-layer flow is un-
stable in the inviscid compressible fluid (R—«)}, that is,
whether or not the product of the density and the vorticity

g has an extremum for some value of w>1— 1 T there is
0

always some value of the Reynolds number E, -~ below
which the effect of viscous dissipation predominates and the
flow is stable. On the other hand, at very large Reynolds

numbers the influence of viscosity is destablizing. If the
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free-stream velocity 1s subsonic, any laminar boundary-layer
flow is unstable at sufficiently high (but finite}) Reynolds
numbers, whether or not the flow is stable in the inviscid
fluid “hen only the inertia forces are considered.

The action of the inertia forces is more decisive for (he
stability of the laminar boundary layer if the free-stream
veloeity is supersonic. Because of the physical requirement
that the relative phase velocity (1—¢) of the boundary-layer

disturbances must be subsonie, it follows that c>1———l—~>0

and the quantity I:ly <p dy):l can be large enough nega-

tively under certain conditions so that the stabilizing action
of the inertia forces near the inner critieal layer (where
w=c_>0) is not overcome by the destabilizing action of
viscosity near the solid surface. In that ecase, undamped
disturbances cannot exist in the fluid, and the flow is stable
at all values of the Reynolds number.

Regardless of the free-stream velocity, the dlstubutlon of

the product of the density and the vorticity p%; across the

boundary layer determines the actual limit of stability, or the
minimum critical Reynolds number, for laminar boundary-
layer flow in a viscous conductive gas (cquation (71)).

Since the distribution of p% across the boundary layer in

turn is determined by the free-siream Mach number and
the thermal conditions at the solid surface, the effect of these
physical parameters on the stability of laminar boundary-
layer flow is readily evaluated.

B. EFFECT OF FREE-STREAM MACH NUMBER AND THERMAL CONDITIONS
AT SOLID SURFACE ON STABILITY OF LAMINAR BOUNDARY LAYER

The distribution of mean velocity and mean temperature
<and therefore of p p; ) across the laminar boundary layer in

a viscous conductive gas is strongly influenced by the facl
that the viscosity of a gas increases with the temperature.
(For most gases, poc T™ (m=0.76 for air) over a fairly wide
temperature range.) When heat is transferred to the fluid
through the solid surface, the temperature and viscosity
near the surface both decrease along the outward normal, and
the fluid near the surface is more retarded by the viscous
shear than the fluid farther out from the surface—as com-
pared with the isothermal Blasius flow. The velocity profile
therefore always possesses a point of inflection (where w' =0)
when heat is added to the fluid through the solid surface,
provided there is no pressure gradient in the direction of the
w// w/ TI

-Th 2

(p 7 ) vanishes and pi,— has an extremum at some point

main flow. Since & <p dy) the quantity

dy
in the fluid.

the fluid through the solid surface, %T and . ‘; arc both posi-

On the other hand, if heat i 1:3 x&’lthdxawn flom

tive near the surface and the fluid near the surface is less
retarded than the fluid farther out—as compared with the
Blasius flow. The velocity profile is therefore more convex
near the surface than the Blasius profile.
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As pointed out in section 11 of reference 8, the influence of
the variable viscosity on the behavior of the product of the

density and the vorticity p (é—l; can be seen directly from the

equations of motion for the mean flow. When there is no
pressure gradient in the direction of the main flow, the fluid
acceleration vanishes at the solid surface, or

e d —au* _
a—y*)l‘[ay S )1‘0 (72)

)__L ) au—*)__ﬁ E) aL—;) (73)
ay*’ A A AN T ALY A

Thus, when heat is added to the fiuid through the solid sur-

an

*
face (7,7 <C0), (a *2> is positive, and the velocity profile is
1

concave near the surface and possesses a point of inflection
for some value of w>>0; when heat is withdrawn from the

fluid (777>0), ( *2) is negative, and the velocity profile

is more convex near the surface than the Blasius profile.

The behavior of the quantity 57 (Z%* g;*) e ( *d?ﬂ

is parallel to that of gy*: From equation (73), in nondi-

mensional form,

[é( d_uﬂ _[_d_(ﬁ’)]__m%l T top.?
\Pdy ) | T\ T/ T T T ™

Differentiating the dynamic equations once and making use
of the energy equation gives the following expression for

(%1(%)1 (appendix D): B
(11)*
T 3

(74)

#2(5) | =emtn =3 Bl 4 o0m 1y
1

| (75)

Thus, for zero pressure gradient, l:diyz (Q‘—Uf):[ls always positive.

Now, if the surface is insulated, the quantity [d_ %)]

vanishes, but <T>:l >0 and — d < and both in-
crease with distanee from the solid surface. Since l%%O

far from the solid burface T has a maximum and d(

If heat is added to the

fluid through the solid surface (17" <C0), é{ (2/,_’]7) is already

vanishes for some value of w>0.

positive at the surface; and since [r%/_z <? 1 >0, the quan-
tity diy <-L?T) vanishes at a point in the fuid which is farther

from the surface than for an insulated boundary at the same
Maech number (figs. 3 (a) and 3 (b)}. Consequently, the value
of e=¢, for which the funetion
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(1 - 7)\)0(6) —_ ( 9}\) /LU‘ (w )3 dy >:L—c

reachesthe value 0.5801islarger than the valuefortheinsulated
By equation (71), the effect of adding heat to the N

surface.
fluid through the solid surface is to reduce Raam
destabilize the flow, as compared with the fow over an in-
sulated surface at the same Mach number (fig. 6).

and to

If heat is withdrawn from the fluid through the solid sur-

face, 7">0and l:(—z% (%):L is negative. 1In fact, if the rate

of heat transfer is sufficiently large, the quantity

5—@’ <wT) does not vanish within the boundary layer (fig. 3 (b)).

The value of e=e¢, for which the function (1—2\)2(e)
reaches the value 0.580 is smaller than for an insulated
surface at the same Mach number; and by equation (71),
the effect of withdrawing heat from the fuid
through the solid surface is to increase Rg“mm and to stab-

ilize the flow, as compared with the flow over an insulated
surface at the same Mach number (fg. 6). When the veloc-
ity of the free stream at the “edge’” of the boundary layer
is supersonic, the laminar boundary layer is completely
stabilized if the rate at which heat is withdrawn through
the solid surface reaches or exceeds a critical value that
depends only on the Mach number, the Reynolds pumber,
and the properties of the gas. The eritical rate of heat

,

transfer is that for which the quantity %(%) is suffi-

ciently large negatively near the surface (see equation (74))

so that (1—2N)e(e})=0.580 when c=co=1—.%(sections 4
Ldg

and 5). Although detailed stability calculations for super-
sonic flow over a noninsulated surface have not been earried
out, the function (1—2X\)v(¢) has been computed for non-
insulated surfaces at 3/,=1.30, 1.50, 2.00, 3.00, and 5.00 by
a rapid approximate method (appendix C). The correspond-
ing estimated values of Ry were calculated from equa-

15 in

tion (71), and in figure 7 these values are plotted against T},
the ratio of surface temperature (deg abs.) to free-stream tem-
perature (deg abs.). At any given Mach number greater
3 . 1.
, mcreases rapidly as ¢;— 1—77i

mi 13

than unity, the value of Rgm_

when ¢, differs only slightly from 1—1 YA the stability of

the laminar boundary is estremely sensitive to thermal
conditions at the solid surface. At each value of 31£,>1,
there is a critical value of the temperature ratio 7  for which

R —w, If T 1§Tlc,> the laminar boundary layer is

Tmin
stable at all Reynolds mumbers. The difference between the
stagnation-temperature ratio and the critical-surface-
temperature ratio, which is related to the heat-transfer
coefficient, is plotted against Mach number in figure 8.
Under free-flight conditions, for Mach numbers greater
than some critical Mach number that depends largely on
the altitude, the value of T,—7; is within the order of
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magnitude of the difference between stagnation temperature
and surface temperature that actually exists because of heat
radiation from the surface (references 14 and 15). In other
words, the eritical rate of heat withdrawal from the fluid
for laminar stability is within the order of magnitude of the
calculated rate of heat conduction through the solid surface
which balances the heat radiated from the surface under
equilibrium conditions. The calculations in appendix E
show that this critical Mach number is approximately 3 at
50,000 feet altitude and approximately 2 at 100,000 feet
altitude. Thus, for M; >3 (approx.) at 50,000 feet altitude
and M, >2 (approx.} at 100,000 fcet altitude, the laminar
boundary-layer flow for thermal equilibrium is completely
stable in the absence of an adverse pressure gradient in the
free stream.

When there is actually no heat conduction through
the solid surface, the limit of stability of the laminar
boundary layer .depends ounly on the free-stream Mach
number, that is, on the extent of the “acrodynamic heating’”’

<of the order of u,* (g%) ) near the solid surface. A good
indication of the influence of the free-stream Mach number
on the distribution of p g—;) across the boundary layer for an
insulated surface is obtained from a rough estimate of the
. . Lo d dw .
location of the point at which &y <p @) reaches a positive
mum (or 5 (p 32) vanishes ). Differentiating th
maximum {or zz{» 7 vanishes }. ifferentiating the

dynamic equations of mean motion twice and making use of
the energy and continuity equations yields the following
result for an insulated surface:

(&) -5 %ﬁjﬁi S

where b=3¢ \/ % From equations (75) and (76) the value
0

of ¢ at which & “2 (T) vanishes, or &y <T> reaches & maxi-

mum, is given roughly for air by

w
R R

b(0 33 O)

in which w,’ = (appendix B).

point in the fluid at which Ty <7> attains 2 maximum moves

farther out from the surface as the Mach number is in-
creased—at least in the range 0= A, £4.5 (approx.); there-

fore the value of ¢ for which % (%7) vanishes and the value

of e=¢, for which (1—2)\)»(¢) reaches the value 0.580 both

In other words, the
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increase with the Mach number (fig. 3 (a)). By equation
(71), the value of Ry, for the laminar boundary-layer flow

over an insulated surface decreases as the Mach number
increases and the fow is destabilized, as compared with the
Blasius flow (fig. 5).

C. RESULTS OF DETAILED STABILITY CALCULATIONS FOR INSULATED AND
NONINSULATED SURFACES

From the results of the detailed stability caleulations for
several representative cases (figs. 4 to 6), a quantitative esti-
mate can be made of the effect of free-stream Mach number
and thermal conditions at the solid surface on the stability of
laminar boundary-layer flow. For the insulated surface, the
value of Beamm is 92 when 1/£;=1.30 gs compared with a value

of 150 for the Blasius flow. For the noninsulated surface al
My=0.70, the, value of Ry, t is 63 when T1=1.25 (heat

added to fluid), R, =126 when T;=1.10 (insulated sur-
face), and Ry, =5150 when 71=0.70 (heat withdrawn

from fluid). Since R,*=~2.25R¢* (ihe value of 6 \/.u_:**,which
vo*a
is proportional to the skin-friction coefficient, differs only
slightly from the Blasius value of 0.6667), the effeet of the
thermal conditions at the solid surface on R,* is even more
pronounced. The value of R,* 1s 60><10°% when 71=0.70 and
M,=0.70, as compared with a value of 51X10% for the
Blasius flow (T1=1 and A£;=0). For the insulated surface
the value of R, l declines from the Blasius value for

AMy=0 toa value of 19X 10% at Af,=1.30. The extreme
sensitivity of the limit of stability of the laminar boundary

- layer to thermal conditions at the solid surface when 7,1

is accounted for by the fact that ¢ is small when T:<1 and
M,<1 (or J[o is not much ~greater than unity) and

Ry
'mirz

produce. lalge changes in E”Cfmm

(equatxon (11)) Small changes in ¢, Lherefore,

cr

In addition, when T1<1,

" small changes in the thermal conditions at the solid surface

produce appreciable changes in(% <%> (equation (74)) and,

therefore, in the value of ¢
Not only is the value of Ry - affected by the thermal

conditions at the solid surface and by the free-stream Mach
number but the entire curve of oy against Ry for the neutral
disturbances is also affected. (See figs 4 (k) and 4 (1.)
‘When the surface is insulated (and 3= 0), or heat is'added
to the luid (T7=1.25), as—a, 70 as Ry— » along the upper
branch of the curve of neutral stability. In other words,
there is a finite range of unstable wave lengths even in the
limiting case of an infinite Reynolds number (inviscid fluid).
However, @0 as Ry— « for the Blasius flow, or when heat
is withdrawn from the fluid. This behavior is in complete
agreement with the results obtained in section 4 and in
reference 8.
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A comparison between the curves of op against Rs for
Ty=1.25 and T,=0.70 at }/;=0.70 shows that withdrawing
heat from the fluid not only stabilizes the flow by increasing
R,,  but also greatly reduces the range of unstable wave

numberb (eg). On the other hand, the addition of heat to
the fluid through the solid surface greatly increases the range
of unstable wave numbers.

It should also be noted that for given values of as, ¢,
and R, the time frequencies of the boundary-layer disturb-
ances in the high-speed flow of a gas are considerably greater
than the frequencies of the familiar Tollmien waves observed
in low-speed flow. The actual time frequency n* expressed
nondimensionally is as follows:

n¥r*
(71,%)?

— fas

2nFs
For given values of ¢, as, and Ry the frequency increases as
the square of the free-stream velocity.

D. INSTABILITY OF LAMINAR EGUNDARY LAYER AND TRANSITION TO
TURBULENT FLOW

The value of Re_, )

for a given laminar boundary-layer flow is the value of the
Reynolds number at which self-excited disturbances first
appear in the boundary layer. -As Prandtl (reference 12)
carefully pointed out, these initial disturbances are not
turbulence, in any sense, but slowly growing oscillations.
The value of the Reynolds number at which boundary-
layer disturbances propagated along the surface will be
amplified to a sufficient extent to cause turbulence must be
larger than Rs“mm in any case; for the insulated flat-plate

obtained - from the stability analysis

flow at low speeds and with no pressure gradient, the tran-
sition Reynolds number Re is found to be three to seven

(references 6 and 7).

min

depends not onlv on R

times as large as the value of R,
The value of Rs[

the initial magnitude of the disturbances with the most
‘“‘dangerous’ frequencies (those with greatest amplification),
on the rate of amplification of these disturbances, and on the
physical process (as yet unknown) by which the quasi-
stationary laminar flow is finally destroyed by the amplified
oscillations. (See, for example, references 16 and 17.) The
results of the stability analysis nevertheless permit certain
general statements to be made concerning the effect of
free-stream Mach number and thermal conditions at the
solid surface on transition. The basis for these statements is
summarized as follows:

(1) In many problems of technical interest in aeronautics
the level of free-stream turbulence (magnitude of initial
disturbances) is sufficiently low so that the origin of transition
is always to be found in the instability of the laminar bound-
ary layer. In other words, the value of Ry, . is an absolute

but also on

Tonin

lower limit for transition.
{2 The effect of the free-stream N ach number and the
thermal conditions at the solid surface on the stability limit

(Rec, ) is overwhelming. For example, for 4/,=0.70, the
value of Ry, . when T7=0.70 {heat withdrawn from fluid)
is more than 80 times as great as the value of Ry, , when

T,=1.25 (heat added to fluid).
(3) The maximum rate of amplification of the self-excited

boundary-layer disturbances propagated along the surface __

varies roughly- as lf—yfRaumg. (This approximation agrees
closely with the numerical results obtained by Pretsch
(reference 18) for the case of an incompressible fluid.} The
effect of withdrawing heat from the fluid, for example, is
not only to increase Ry, , and stabilize the fow in that
manner but also to decrease the initial rate of amplification
of the unstable disturbances. In other words, for a given
level of freestream turbulence, the interval between the
first appearance of self-execited disturbances and the onset of
transition is expected to be much longer for a relatively
stable flow, for which R, , is large, than for a relatlvely

unstable ﬂow, for which Rga -
of amplification is large. -
On the basis of these observations, transition is delayed
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is small and the initial rate

(Rs,, increased) by withdrawing heat from the Auid through ~
the solid surface and is advanced by adding heat to the fluid
through the solid surface, as compared with the insulated . '

surface at the same Mach number.
transition ocecurs carlier as the Mach number is increased, as
comparal with the flat-plate flow at very low Mach numbers.
vvhien the free-stream velocity at the edge of the boundary
layer is supersonic, transition never occurs if the rate of heat
withdrawal from the fluid through the solid surface reaches

For the insulated surface,

or exceeds a critical value that depends only on the Mach

number (section 6B and figs. 7 and S). L
A comparison between the It'bultb of the present aualvms
and measurements of transition is possible only when the

free-stream pressure gradient is zero or is held fixed while the

free-stream Mach number or the thermal conditions at the
solid surface are varied. Liepmann and Fila (reference 19)
have measured the movement of the transition point on a

flat plate at a very lew free-stream velocity when heat is

applied to the surface. They found by means of the hot-wire
anemometer that B,.,, declined from 5X10? for the insulated
surface to a value of approximately 2X10° for 7,=1.36 when
T)z
AT
%732

or to a value of 3X10° when A, (2 *)2—0 .05 percent and

Ty=1.40. The value of R,, declines from 470 (approx.) to
300 (approx.) in the first case and to 365 in the second.
Frick and McCullough (reference 20) observed the varia-
tion in the transition Reynolds number when heat is applied
to the upper surface of an NACA 65, 2-016 airfoil at the nose
section alone, at the section just ahead of the minimum pres-
sure station, and for the entire laminar run. When heat is
applied only to the nose section, the transition Reynolds

the level of free-stream turbulence -\,’ was 0.17 percent




354

number (determined by total-pressure-tube measurements)
was practically unchanged. Near the nose, Ri<Re,,,

and the strong favorable pressure gradient in the region of
the stagnation point stabilizes the laminar boundary layer
to such an extent that the addition of heat to the fluid has
only a negligible effect. When heat is applied, however, to
the section just ahead of the minimum pressure point, where
the pressure gradients are moderate, the transition Reynolds
number R;, declined to a value of 1190 for T,~1.14, com-
pared with a value of 1600 for the insulated surface. When
heat is applied to the entire laminar run, Ry, declined to a
value of 1070 for T,~1.14.

It would be interesting to investigate experimentally the
stabilizing effect of a withdrawal of heat from the fluid at
supersonic velocities. At.any rate, on the basis of the
results obtained in the experimental investigations of the
effect of heating on transition ai low speeds, the results of
the stability analysis give the proper direction of this effect.

7. STABILITY OF LAMINAR BOUNDARY-LAYER FLOW OF
A GAS WITH A PRESSURE GRADIENT IN THE DIRECTION
OF THE FREE STREAM

For the case of an incompressible fluid, Pretsch (reference 9)
has shown that even with & pressure gradient in the
direction of the free stream, the local mean-velocity distri-
bution across the boundary layer completely determines the
stability characteristics of the local laminar boundary-layer
flow at large Reynolds numbers. From physical considera-
tions this statement should apply also te the. compressible
fluid, provided only the stability of the flow in the boundary
layer is considered and not the possible interaction of the
boundary layer and the main ‘“external’” flow. Further
study is required to settle this question.

If only the local mean velocity-temperature distribution
across the boundary layer is found to be significant for
laminar stability in a compressible fluid, the criterions ob-
tained in the present paper and in reference 8§ are then im-
mediately applicable to laminar boundary-layer gas flows in
which there is a free-stream pressure gradient. The guanti-
tative effect of a pressure gradient on laminar stability could
be readily determined by means of the approximate estimate
of Ry, ., (equation (70)) in terms of the distribution of

the quantity p% across the boundary layer. Such calecula-

tions
Dr. C. C. Lin of Brown University for the incompressible fluid
by means of the approximate estimate of R, .. given in
reference 5, part II1. o

In any event, the qualitative effect of a ftee—stream pres-

dw
sure gradient on the local distribution of gy deross the

boundary layer is evidently the same in a compressible fluid
as in an incompressible fluid. If the effect of the loecal
pressure gradient alone is considered, the velocity distribu-
tion across the boundary layer is “fuller’ or more convex for
accelerated than for wuniform flow and, conversely, less

(unpublished) have already been carried out by.
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convex for decelerated flow. Thus, from the results of the
present paper the effect of a negative pressure gradient on
the laminar boundary-layer flow of gas is stabilizing, so far
as the local mean velocity-temperature distribution is con-
cerned, while a positive pressure gradient is destabilizing.
For the incompressible fluid, this fact is well-established by
the Rayleigh-Tollmien criterion (reference 3), the work of
Heisenberg (reference 1) and Lin (reference 5), and a mass of
detailed calculations of stability limits from the curves of «
against R for the neutral disturbances. These calculations
were recently carried out by several German investigators
for a comprehensive series of pressure gradient profiles.
(See, for example, references 9 and 21.)

Someidea of the relative influence on laminar stability of
the thermal conditions at the solid surface and the free-stream
pressure gradient is obtained from the equations of mean
motion. At the surface,

aF)__ a’_<— duF
oy* /i Loy \* dy*

m-]—l 1 & d{z;_
dy(pdy)] - T =i =5 e

In a region of small or moderate pressure gradients
(54

v* dz
thermal conditions at the solid surface. For example, the
chordwise position of the point of instability of the laminar
boundary layer on an airfoil with a flat pressure distribution
is expected to be strongly influenced by heat conduction
through the surface. (Sec reference 20.) For the insulated
surface, the equations of mean motion yield the following
relatlon (appendix D), which does not involve the pressure
gradient explicitly:

T w G

or

(79)

=2, say) the distribution of p Cé is sensitive to the

B (r ) | =etntno—nae Gl>0 @0

The effect of “aerodynamic heating’” at the surface opposes
the effect of a favorable pressure gradient so far as the dis-

o e - dw .
tribution of P gy BCross the boundary layer is concerned

(equations (79) and (80)). The relative quantitative influ-
ence of these two cffects on laminar stability can only be
settled by actual caleulations of the laminar boundary-layer
flow in a compressible fluid with a free-stream pressure
gradient. A method for the caleulation of such flows over
an insulated surface is given in refercnce 22,

When the local free-stream velocity at the edge of the
boundary layer is supersonie, a negative pressurc gradient
can have a decisive effect on laminar stability. The local
laminar boundary-layer flow over an insulated surface, for
example, is expected to be completely stable when the mag-
nitude of the local negative pressure gradient reaches or
exeeeds a critical value that depends only on the local Mach
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number and the properties of the gas. The critical magni-
tude of the pressure gradient is that which makes the quantity

dw . .
&y <pd—t;) sufficiently large negatively near the surface so that

—[1—=2\e)]r T (w Wy dy (I'})]

when ¢=1 —ﬁ\

It has already been shown in the present paper than when
Af,>>3 (approx.) the laminar boundary-layer flow with a
uniform free-stream velocity is completely stable under free-
flight conditions when the solid surface is in thermal equi-
librium, that is, when the heat conducted from the fluid to
the surface balances the heat radiated from the surface (sec-
tion 6B). The laminar boundary-layer flow for thermal
equilibrium should be completely stable for 1fy>11,, say,
where 11,<(8 if there is a negative pressure gradient in the
direction of the free stream. Favorable pressure gradients
exist over the forward part of sharp-nosed airfoils and bodies
of revolution moving at supersonic velocities, and the limits
of stability (R, _,) of the laminar boundary layer should

be caleulated in sueh cases.

CONCLUSIONS

From a study of the stability of the laminar boundary
layer in a compressible fluid, the following conclusions were
reached:

1. In the compressible fluid as in the incompressible fluid,
the influence of viscosity on the laminar boundary-layer flow
of a gas is destabilizing at very large Reynolds numbers.
¥f the free-stream velocity is subsonie, any laminar boundary-
layer flow of gas is unstable at sufficiently high Reynolds
numbers.

2. Regardless of the free-stream Mach number, if the
product of the mean density and the mean vorticity has an

extremum (diy (p %) vanishes ) for some value of w>1 —ﬁ

(where w is the ratio of mean velocity component parallel
to the surface to the free-stream velocity, and where 11, is
the free-stream Mach number) the flow is unstable at suffi-
ciently high Reynolds numbers.

3. The actual limit of stability of laminar boundary-layer
flow, or the minimum critical Reynolds number R, , , Is
determined largely by the distribution of the product of the
mean density and the mean vorticity across the boundary
layer. An approximate estimate of R, , is obtained that
serves as a criterion for the influence of free-stream Mach
number and thermal conditions at the solid surface on
laminar stability. For zero pressure gradient, this estimate
reads as follows:

5 [T(eg)]"
- Tl CQ’;'\’il —ZL[OE(]. —60)2

é .
Tmin

where 7 is the ratio of temperature at a2 point within the
boundary layer to free-stream temperature, T is the ratio
of temperature at the solid surface to the free-stream tem-
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perature, and ¢, is the value of ¢ (the ratio of phase ve-
locity of disturbance to the free-stream wvelocity) for which

(1—2)}»=0.580. The functions #(c) and \(c) are defined as

follows:
- bw> c [’
T\, 2
‘L’(C): 1?77 1 aT 33_ 1 520)
| l_ Ow On T oy
<‘a"7 ’ w=c
()
_ o7 1
Me)= p 1
where
n nondimensional distance from surface (y* i:**)
e X

4. On the basis of the stability eriterion in conclusion 3
and a study of the equations of mean motion, the effect of
adding heat to the fluid through the solid surface is to
reduce Ry, . and to destabilize the flow, as compared ‘with

the flow over an insulated surface at the same Mach number,

Withdrawing heat through the solid surface has exactly the
opposite effect. The value of Rg,, , for the laminar boundary-

layer flow over . an insulated surface decreases as the

Mach number increases, and the flow is destabilized, as

compared with the Blasius flow at low speeds.

5. When the free-stream velocity is supersonie, the lami-
nar boundary layer is completely stabilized if the rate at
which heat is withdrawn from the fluid through the solid
surface reaches or exceeds a certain critical value. The _
critical rate of heat transfer, for which Ry, ,—>, 1s

that which makes the quantity Zi%(p %) sufficiently large
negatively near the surface so that [1—2A{e)] ©(c)=0.580

when e=¢=1— Calculations for several supersonic

‘u’
Mach numbers between 1.30 and 5.00 show that for 1/,>3
(approx.) the critical rate of heat withdrawal for laminar
stability is within the order of magnitude of the calculated
rate of heat conduction through the solid surface that bal-

ances the heat radiated from the surface under free-flight
conditions. Thus, for 3/,>>3 (approx.) the laminar boundary-
layer flow for thermal equilibrium is completely stable

at all Reynolds numbers in the absence of a positive (adverse)

pressure gradient in the direction of the free stream.

6. Detailed ealculations of the curves of wave number
(inverse wave length) against Reynolds number for the
neutral boundary-layer disturbances for 10 representative
cases of insulated and noninsulated surfaces show that also
at subsonic speeds the quantitative effect on stability of

the thermal conditions at the solid surface is very large.

For example, at a Mach number of 0.70, the value of Rg“; "
is 63 when 7,=1.25 (heat added to fluid), R, =126
when 77=1.10 (insulated surface), and Ry, , =5150 when
T1=0.70 (heat withdrawn from fluid). Since R,»=2.25E{,
the effect on R« _, Is even greater. :
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7. The results of the analysis of the stability of laminar
boundary-layer flow by the linearized method of small per-
turbations must be applied with care to predictions of
transition, which is a nonlinear phenomenon of a different
order. Withdrawing heat from the fluid through the solid
surface, however, not only increases Re, . but decreases
the initial rate of amplification of the self-excited disturb-

ances, which is roughly proportional to 1 /\/Rec;mi; addition
of heat to the fluid through the solid surface has the opposite
effect. Thus, it can be concluded that (a) transition is
delayed (R, increased) by withdrawing heat from the fluid
and advanced by adding heat to the fluid through the solid
surface, as compared with the insulated surface at the same
Mach number, (b) for the insulated surface, transition
occurs earlier as the Mach number is increased, and (¢) when
the free-stream velocity is supersonic, transition never
oceurs if the rate of heat withdrawal from the fuid through
the solid surface reaches or exceeds the eritical value for
which R, —e. (See conclusion 5.)

Unlike laminar instability, transition fo turbulent flow in
the boundary layer is not a purely local phenomenon but
depends on the previous history of the flow. The quantita-
tive effect of thermal conditions at the solid surface on
transition depends on the existing pressure gradient in the
direction of the free stream, on the part of the solid surface
to which heat is applied, and so forth, as well as on the
initial magnitude of the disturbances (level of free-stream
turbulence).

A comparison between conclusion 7 (a), based on the
results of the stability analysis, and experimental investi-

gations of the effect of surface heating on transition at low
speeds shows that the results of the present paper give the
proper direction of this effect.

8. The results of the present study of laminar stability
can be extended to include laminar boundary-layer flows
of a gas in which there is a pressure gradient in the direction
of the free stream. Although further study is required, it
is presumed that only the local mean velocity-temperature
distribution determines the stability of the local houndary-
layer flow. If that should be the case, the effeet of a pressure
gradient on laminar stability could be ecasily calculated
through its effect on the local distribution of the product
of mean density and mean vorticity across the boundary
layer.

YWhen the free-stream velocity at the “edge’” of the hound-
ary layer—is supersonic, by analogy with the siabilizing
effect of a withdrawal of heat from the fluid, it is expeefed.
that the laminar boundary-layer flow is completely stable
at all Reynolds numbers when the negative (favorable}
pressure gradient reaches or exceeds a certain critical value
that depends only on .the Mach number and the properties
of the gas. The laminar boundary-layer flow over a surface
in thermal equilibrium should be completely stable for
My>AL, say, where M,<3 if there is a negalive pressurce
gradient In the direction of the free stream.

LangLey MEMORIAL AERRONAUTICAL LABORATORY,
NaTioNAL Apvisory CoMMITTEE FOR AERONAUTICS,
Lawcerey Figvp, Va., September 5, 1846.



APPENDIX A

CALCULATION OF INTEGRALS APPEARING IN THE INVISCID SOLUTIONS

In order to calculate the limits of stability of the laminar boundary layer from relations (21) to (29) between the values
of phase velocity, wave number, and Reynolds number, it is first necessary to calculate the values of the integrals Kj,

oy, Hs, Ny, M,
derivatives at the edge of the boundary layer.

A= [ "7y
K= | " Iy,

J_Lg (w—C) bd

N, and so forth, which appear in the expressions for the inviscid solutions o.(y) and ¢(y) and their
These integrals are as follows (equations (13), (9), and (10}):

£ {(w—c)?

A(a_ALL.K_]”T S

M(:EH—H=f
sle) ally 3 i T

r(w—e)? f"?T—ﬂfni(w—c)z
dy | —————5—
JY

e T— 3 (w—e)?

dy=1I,(e)

JH

dy‘ ¥ ('w—c}-dy
R

(w—e)? \ T

M@=Km;&=[

Ju (w—c)®

and so forth.

7 [f {wr—c)? dy I’i" T—_LQ (w—c)*

F: dy

JE w—c}

Terms of higher order than o in the series expressions for ¢; and ¢, are neglected. VWhen a<(1, the error involved is

- h
small because the terms in the series decline like (;T,-

Even for «>> 1, however, this approximation is justified, at least

for the values of e that appear in the stability calculations for the 1C representative cases selected in the present paper.

For example, the leading term in R. P. Nuy.(c),

the leading term in R. P. N;(e).

R. P. Ny(e)=0.06 R. P. N;(¢). Moreover, R. P.

The only integral for which the imaginary part is calculated is K(e).

where k=23,

The guantity in the brackets is at most 0.12 in the present caleulations;
(1—e) R. P.

between R. P. 1fo.(c) and R. P. A4;(¢); and, in addition, R. P. Jfg(c)~(1—-c)

Nox(e ) ==

. . 1 I E-L .o
., 18 approximately =| s —+——— multiplied by
Fl3a—a 5

for example,
Similar approximate relations exist

Nags 1‘(0)
_R. P. Ny(e)=0.015 R. P. Ns(c), at most.

At the end of this appendix, it is shown that

the contributions of the imaginary parts of M, 1f;, and N; are negligible in comparison with the contribution of 1. P. Ki(¢).

GENERAL FLAN OF CALCULATION
The method of caleulation adopted must take into account
) d ( dw . .
the faet that the value of ap\r d—y> at the point =y,

where w=¢, strongly influences the stability of the laminar
boundary layer. Accordingly, the integrals are broken into
two parts; for example,

- T
Ki(e)= ]yi o=y dy+ f} —a dJ A3
—AILRC) Kip(e) =37
where y,>y.. The integral K (¢), which involves

[b% dw)] , iscalculated very accurately, whereas A.(¢)

is calculated by a more approximate method as follows:

- 4z T ’
Kix(c) =fm o—op dy (A1}

This integral is evaluated as a powerseriesine. The velocity
profile w(y) is approximated by a parabolic arc plus a
straight-line segment for purposes of integration. In the more
complex integrals H,, 1f;, and N, the indefinite integrals
) :m dy andJ; —c)? dy are evaluated by 21 or 41
point numerical integration by means of Simpson’s rule.
The values of w(y) are read from the velocity profiles of
figures 1 and 2. The value of ¥;—y,=a is 0.40 in the present

series of calculations; this value is chosen so that the point
y=y; is never too close to the singularity at y=y. Take

¥ T
/L“(c)_ﬁl mdy

The integral ki (e), or the indefinite integral

(A2)

T
Jn (w o W
that appears in Hs, Af;, and N, is evaluated by expanding
357
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the integrand in a Taylor’s series'in y—v, and then integrat-
ing the series term by term. The path of integration must
be taken below the point y=v, in the complex y-plane.

Instead of calculating the values of the velocity and tem-
perature derivatives w, and T, directly, it is simpler
to relate these derivatives to their values at the surface by
Taylor’s series of the form

ap, (B t2)
WM =w W D () + =g W)

The derivatives at the surface w® and T\ are caleulated
from the equations of mean motion (appendix B).

The integral K {c), for example, is finally obtained as a
power series in y.—=c¢ and in y¥,—y.=a—o, plus ferms
involving log ¢. The phase velocity ¢ is related to ¢ by

c=w,’ <o‘+ 5 + N )

where
w, ®
aw,’

Ak=

Terms up to the order of ¢® are retained in order to include
all terms involving w, .

DETAILED CALCULATIONS

In order to illustrate the method, the evaluation of K (c)
is given in some detail, as follows:
(1) Evaluation of K, (¢):

K()—J'y’—i—d M,
)= #h (w_C)Z Y=o

(a)} Define
v T
KH(C)=L! @:‘C)_z dy
Now
r ___r
(w—e)* () (y—y)**
where
YY) = 1+ /(?f yc)+3|wf(y Yo'+ .

The function %; is developed in a Taylor's series around the

point w=c¢ as follows:

5= ()t (). im0 +(p), 51

where

Yo=1
wege R
%wﬁm B
Then
Kule)= (fwi’)zﬁz : Céz/y y€c> [(3,:) +<¢2) y—ya+

B e ]

and

Kul9= @mﬁ{[ - Ejm+< ), In y)* ().

+11§<§)c Kyj_yc)g_(yl_yc)z]—'l_- i

(k1) ) .
+a)a+1g<y) (=9~ v+ - |

where

Y—Ye= Y1 —Yole™*

Yi—Yo=Y—y1) — Y. —p)=0—¢c

=YY

®
The coeflicients (j;) are expressed in terms of derivatives

of T and w at y=v, as follows:
Define

1 1 T\
10= 1w wr ()

T
fq(?/)=—w e

1=y () =y 5 (1)
hen

) ~aryd=nm | (#) ],

=) 1 @) e+ (i,

(k= 2)

{The method adopted for the caleulation of f*(y) from the
velocity and temperature derivatives w,“* and 7\ is given
at the end of this appendix.)

From the expression for Ky, (e},

L P Ki@=I1P. K

=7"f 1 (Z/c)

=A@ -5 S |

and
R. P. K0+

éZCO"'["ClO"{—CgO'E—f— e et

&f{“@ In <(% t{>+

"yt ..

Ulffo(k)(?/l)_[_ O’forf(,f[
k! ) 720
where
=Y. — U1
)
_Sk‘l—fo(k_}_g,l) —d e foly1) 0=<k=5 (85=0)

so=af () +afs(y1) +afu(y) +afs(y) + et () + . ..
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si=afy’ () + & () +a¥ )+ )+ . . - — -

[2af,(y) -+ 302, () + 403y + 5 haly) + - - . ]

=L [ )+ ) A ) -
(2" ()4 303, () + 40y () + . . . 1+
Bafy) +6a’:(y) +10a%(y)+ . . . ]

s=3 [ah" )+ )+ I

L2y () 3 ) - ..

[3afy () + 60y () + - - . I—
Mafs(y) +10a () + - - . ]

se=g WA+ - - =5 e+ 1
3Baf @+ . 1-Hai @)+ .. 1+
[Bafslw)+ - - - ]

dg: Z] (r lr—il)‘ dk_. (d0=1.0)

: k=uu§:f) (@=0.40)

(b) Define

” T
1a(e)= Jﬁ T dy

o T
=£,0 w—a:?

2‘, +1)c*

Y—y)

where

1 T
a= | s d—p)

The veloeity profile w(y) is approximated by a parabolic
arc in the interval 0.40=2y—y:=y;—y; and by a straight
line (w=Constant=1w(y,))in the interval y—y, Sy—y, =1.0.
The value of y; is determined by imposing the condition
that the area wunder the parabolic-are straight-line
segment equals the area under the actual velocity profile
w(y) in the interval 0.40=2y—y=1.0. The parabolic
are w=Il+my—wy)+nly—y)* is determined by the
following conditions: when y=y,<1,

w=1
w =0

when y=y, and y,—y,=0.40,
w=w(y;) !

where w(y,) is read off the velocity profile of figures 1 and 2.
The value of y, is chosen so that the parabolic are fits the
velocity curve w(y) closely over the widest possible range.
For ¢=1,

T= Tl—[(Tl—l) ~r Mg] w="3

IR
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Therefore T

A= T1(Iz:+2+c7k+2) _|:( T— 1) _’Yg_l ﬂfag:l (Ik+I+Jk+I) -

~—1 .
1= MELt )

where
I— f s d(y—y)
0.40 w*
and
Jo— [ A=y _1—(i—y)
Ju—n [wys)l [w(ys)F

I, is evaluated by approximating w(y) by a parabolic arc
as follows:

L=—1n JA—m—2n{y—y) "

. VAT VAT mF 2ny—y) dow
1 m+2n(y—y) ]”’_gl
T EDA LT M=) ey — T o
2k — 34( n)
T2 Ly _

where A=m?—4ln.
As a control in the ealculation of the series expression

i az(k+1)e* for Kis(c), use is made of the fact that, from
k=0
the definition of I; and J,

. 1
lim (Lt J)=—r -
——e w () S
F| 28 oy
and therefore
i (228)— 2
e (Y v'+

The remainder after N termnsin the series for A,(e) is given
approximately by
[(N-+1) term]

c
1 _—
l: ’w(?/f)]
The real part of Ki{c) is obtained by combining the results
of (a) and (b); that is,

R.P. K.()=R.P. [Kn © +£}1€]+KB(@) 1z

(2) Evaluation of H;(¢):

_ (e (w—0)®
Hl(c)—j;( T dy

The integrand of this integral is free of singularities in the
region of the complex y-plane bounded by y= and y=y.;
therefore, H,(¢) is evaluated by purely numerical integration.
The actual procedure employed for the ecalculation of in-
tegrals of this type is as follows: (The integral H,(c) serves
as an illustration.)

(a) Define

1/ (%, b b
E(C)=g<ﬁpw'dﬁ_2c fopwa’wcz ﬁpdﬂ)
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where

n=y*

and

yo*x*

b=3s

(by With the approximation that the viscosity varies linearly
with the absolute temperature, the velocity w is the samec
function of the nondimensional stream functlon ¢ as in the
Blasius flow; that is,

w=w({) =ws({)

where ¢ is defined by the relation di=pw dy (appendix B).

From these relations L .
pw'dn=[w($)]" ¢ =[ws(ns)]"dns
since df=wz dns. Moreover,
dn= p£§§) T(ws)dns
where
T =Ti—| (1= = L5 M2 | wp =252 Mowy?
for e=1. : o

(¢) Finally, from the relations given in (b},

be by ’
H{c) =% <J0 wpldyg—2e ﬁ wg dng+ Cz)

/ u" for the Blasius flow. For

where b, is the value of § '\

the insulated surfaces, by, w hlch is somewhat arbitrary, was °

chosen as 5.60; whereas for the noninsulated surfaces,
by=106.00. (The value of ws at 5=>5.60 is 0.9950; when
np="0.00, wp=0.9975. " The value of b for the insulated
surfaces is the value of 4 at which w=0.9950; whereas & for
the noninsulated surfaces is the value of » for which
w==0.9975.) The advantage of this procedure is that the

integrals J wg"dyp are calculated once and for all and the

value of Hi(¢) depends only upon the values of & and e
In fact,

Vo &7 [ B
since
&% / =1.730
( ‘ vg© 33*)
and
v B
(9 Vio ) =0.6667
v 2™ /g
Also,

o
[ Wy dﬂBZbo‘_l.Tr?)O
Ay
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and
b b
- f = J T dns
Q 0
=bo+1.73(T,—1)+0.6667 L=— 7 Lasgz
=bo+1.73 [(T1~1) J% M&]—i—Z.BQG? 1’"2"1 M

See appendix B.  (Incidentally, the last relation shows the
effect of free-stream Mach number and thermal conditious
at the solid surface on the “thickness” of the boundary

layer.)

(3) Evaluation of Hy(c):
_ [ T—MPw—c)? V (w—c)® y

BO=), —wogr W), W
_{r T c) J" (v (w—c)?
=), w=ao? dy ) dy— A2 e dy dy

Define
' (" T g, (" =
A e A e
i W—C )2
H22(c)=ﬁ Ll S dy dy

1

(a) The integral H, (c) is-evaluated by methods similar to
those already outlined for the evaluation of /7,(¢). Thus

_ ¥ (w—e)?
H,,(0) = I, LT v dy
—(J mdy ! pw’dy—Qc‘Jl dy[ pwdy—f-czfmdy ’Wp ey
i ¥ ¥

bz <[\ Td?]‘gj(} Wg dn3—2cﬁ Td?’]g f Wy d?]g‘}‘

02 o T’?B dm)

ron [

The nine integrals in the expression for H, (c) are evaluated
by numerical integration using Simpson’s rule.

(b) Define.
T v (w—c)? )
o W,

#0= [

' v w—c)? Y (w—c)?
(w—c)Zdyf dy +J o C)gdq f ot dy

Define -

where

ﬂ!gszz

1)—~-MO] ~rk

0= [" ety [ Y ay

(w—c

e T [V w—e)®
(w—c)zdyfw T &

HQla(C) =
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The integral H, (c} is evaluated as follows:

e T ¥(w—c)?
H, ()= Ii(w_c)zdyfy e Ly

_ el T d (u—C)Zd _
¥ (QL’—C)‘
-] i (QL—C)
[ . (w— C)zlf dy
But.
¥ T
Sy, ey W= RO
and
B (p— ) 2
[,, Yo dy=H,(c)
so that
v (p—e)?
B O =K@ H 0~ | oz dy J, 7 a
Define
4z
P(C} [;] (w 6)2 G(l/:c)dy
1 {° T
R [om (w—c)? Enseydn
where
B fap__ a\2
an;e)=f Py
e dy
=t Y9 { ¢ pa
v.[; 7 c.,n 'J’T T
and

T=T, —[(TI— 1 —”%15102] w27 s

The integral P(c) is evaluated by numerical integration using
Simpson’s rule; the required values of w are read directly
off the velocity profiles of figures 1 and 2. Finally,

H, (0)=Ku(e) Hi(e)—P(c)

The integral H. (¢) is evaluated in exactly the same way as

K (¢) where

0 — w3 (%)

and
trs

P =1 () + i (=¥
R.P. [Hz (€)= (bga® -+ ega® + dpa+ nea®y +
c(ba®+ @+ diat — 2aby— 3a’c,— 4a’dy—5Satng) 4
o (bya?-+cya® ~2abl—3a2c1—4a3dl—l—§— 3acyt+ 6a’dy+ 10a®ny) +
3 (b,a?— 2ab,— 3a%c,+ 3ac,+6a’d+py—2ad,— 10a’ne+as) +
*(—2abs+ 3acs+ p1—4ad1—{—gg L5ane+a,) -+

oot G 5 [ e (- )

in (45 ( é?:%zii o

- glfx(y\)fa (?!1)_|_lf1 (W) A I’ 1f1 (yl)g)
13 [foly)l’ ' 4 folyn) e Ti 3 Jol)

where

s 732
60= (ué )
b= (uy')?

A +BN .,
62=<—£}—'—> (w’)?

A4 + A‘izAs) (') — "fa’((z;f)

_ fz (l/l)
T A

G — {lfz@l)fo ) (1hE) (4 T\
* 3 [fu(yl)l 4fu(y1 o

T,
___} Al 4
= 9 folys) (’L )
i(lfl (1) lfl(yl)fu (y) ' [-lo
9 folyy) 9 L)l 1217
Slfl(yl) NMCARS 1f£ (y) fo (?Jl)

€y =—

lgfe(yx) o) 9 foly) folyy)

1 fl(yl) f(l (yi) rr__ T![“
g | A~

lgfo(lh) Joly:) T

BTI” T/ T1I>3:l
T
dy=— 1 A 1 A 4 T1>

19fo(’!/1) 16fo(yl) 2 V8

Bo N
40

A3 O_Ag

L,
T
Lﬁ(yl)[ =B (BT
16 folyy) '

(-2 St

24‘1

24,

1 T/
=gy

]

L I
A‘i 2 T1 3 Tl T]_ —2

2 a2, BT g
o= | 35 A2 T1T~

1 B 7 Tlll
qlz—m 9 T 31."13 _24‘11 24’1_)‘ TI

TIII/— TIII TI <I’I/)3]
R P

g—,l_, T;” o TI,),:I
Tl T[ e

d=_.1_f2,(y1)_l_if2(y1)fo’<yx}+ By 2
1 12 4y ' 12 folyy) folyn) 5Ty

Zli 2_T1”, Tllf EL_
T, T, +5 T,

Tl I TI,, Tl Tl')3:l
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n =____?_ Bly) 1 fz{yl) A _E)_
0 15 fo(?/l) 20 Jolys) T
1 Aln) I:Bz TI” <T1’>°:l
IR as EREEE i
]- g 1 3 A,; T]l 2 T”
o131 Bz+zA3)+§+3A2 l2(7) -5 |-
Tlfll TI Tlf ]
Ea ( - (7)-0 (7))}
hafo (wc _ )( ) £,
) 2 Tlll Tll."/
34, [2 (4 i __Tl—+
TIH Tl’ 3
o (1) (7)o ()
_w® _
LAp— W
;’1k,=I1k+1—‘A2A"lk (Zéké(‘})
A=Ay — A A — Ay Ay (2sk<5)
A=A — A Ay =244 — Ay A, (2=k=4)
‘ﬁlkh’:Ak_]-]_l,/—J-42Ak,,/'_3442,Ak/,_3A2,,Ak,_A2,I,AIc
k=2, 3)
Akv:Ak-;_J_’V_AzAfgw—‘lAg,Ak’”—6A2"Ak”-—-
4A2”'A;;’—A2I"Ak (k:Q)
. 2=k <6
Bl‘(m)=Ak+1<m)_Ak(m—.-l) EO ;m £43
B7=A32
B7,=2A3A3/
B7”=2(A3’)2+2A3A3”
BS=A‘4.3A4
= Ay Ayt Az Ay
BQ=A42
Byy= A3 45
Finally,

R.P. Hy(c)=R.P. H, (&) +H, () —MyHp(c)

¥
oy
¥

(4) Evaluation of M,(c):

My(e)= f” L f“(m

=My () —MEMy(c)

DAY
{w Tc) dy

where

1 {p—g)? n 7 ¥ —c)?
Afal(c)=fm __(ch) dyj; w—c)? dyﬁl (’ch) dy

and

Mate)= [P gy [ gy ay

(a) The integral M(c) is evaluated in much the same way
as Hy(c); that is,

be be ('ng
bgﬂfsa@)f—‘ﬁ wszdnaf L Twg*dyg dys—

bo N be K7
2¢ <f wB“dan ‘J Twy dygz dys+
0 g8 JO

™ bo ™ ba 7B
J W dnz ‘ f Tws*dns (Z"?B)"*"
0 e JU

ba b (*qm
c (fo d“f:’BJ;Bﬁ Twg*dnp dnp+

bo o
J; w32d778f Ty dop+
«. nB

B bo 7 bo 2
4]; Wa dﬂsf ﬁn Twg dnp dmz)_
by ba
2c8 <ﬁ Wp dmgf Tnp dnst
78
bo W (“wm
f dﬂaf f Tws dns dﬂ3)+
0 8 J0

ba be
R
0 78

where by has the same meaning as in the evaluation of IZ,(c)

and where
3 0 [

7= T(ws) =T (Ti—1)—
The integrals in Afy(e) are evaluated by numerical integra-
tion using Simpson’s rule. Values of wp are taken from the
table in appendi\ B.
(b) For conv emence) the mtegral Afy(e) is transformed as
follows: -

—1 2
5 MM o W 32

My {e) =31311(C) +ﬂf312(6) —'ﬂ{ms(‘—')
where

(w—c)?

Yi ¥ AT
ﬂfiill(c):\fyl T - d?/ v (w c}z Z j (w C) dl
Mii,(e) f (w_h f (w )2 dy fzgfc), dy

ww—e? , (v T  (—c)?
M= 7 [ a7 ey

It is recognized that

fﬂz (w
58

ys T

v mdy 1 (ui C) dy= II212(C)
Therefore '

w—o? dy=H,(c)

M, (e)=H,{c)H, ()

g

By additional transformations, the following equations are
obtained:

My () =H,()P(e) — Q(c)
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where

- e [t o

or

(w—c)?

1 e " (w——c)2
Q(c)~5—3 Jr.ub —T—d77 j:mzu (w—c)? dn f — dn
The integral @(c) is evaluated by numerical integration
using Simpson’s rule; P{c) is evaluated in the calculation
of Hy(e).
The integral 4f;, (¢) is obtained in exactly the same way
as K (c) and Hy (c) that is,

at @ ,a
R P20 =7s (g5t o g2e e §)+

3fo(yf)<3+ oait ot “)[ e o |

Finsally,
R.P. Mi(c)=R. P. My () + Hy(e) [Ho, (€) —~P(e)]+
Q(C) _.ZL{O .Llfgz (C)

(5) Evaluation of Ny(e):

- ] T EEPAY-
oLl T

¥ J‘ (w_c)gd f&'z
(w—c‘)‘ (w C)2

3

Us
Myt ’ n (w 3)2 dyf Ws— y)
” (w-.c)z fﬁ
M-f d T g
vl dy (,w_c)ady
("2 ¥
ALt | dy f (W0 e
S i

It can be shown that the second and third integrals are
identical; therefore,

.L"\(Tg (C) = .Z\]E; 1 (C)

ey, _

y) dy

:L{o ’\32(0) .3[0 iV, (C)

’ T ¥ (w—e)? v T
Nau(e) _L‘ w—0)? a’y‘ﬁa T dy , W) dy
fn T ¥ —c)?
Arsg (C) E_AT% (C) =Jm (’I,UTG)Z dyj;l (yg_y) (w TC) dy

Au@)—f fb‘(w

(a) The integral N;.(c) is evaluated by numerical integra-
tion in & manner similar to H,(c), Hy(c), and My (e); that is,

Nu(c)=L fy w— c)2dy L "y
1 b b % I
=% (j; dﬂﬁpwgdn L dn—2¢ ﬁ) dnj; pw dﬁj; dn+
b . b
sz dnj p dnf dn)
¢ 0 7

where

—y)dy
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N 1 be LI be
34(0)—§ o T dys 0 we'dns . T dns—
[ 7B be
2(:](; T dngﬁ Wg d'flaf T dns+
b nE be
czf Tdﬂgf d?‘]gf T dm;)
0 0 Ey:3

T—T, —[(Tl—l) 1 :uo'z] s =151 AL,

where

The integrals in Ny,(e) are evaluated by numerical integration
in a manner similar to that used in the evaluation of 1/:(c),
and so forth. Most of the integrals will already have been
evaluated in the caleulation of Hy(c), Hu(c), and Ifsu(c).
(b) For convenience, Vy(e) is broken down as follows:

£ “(ap— p\2
Nyple)= f ’ (w_jj 7 dyf o )y
_ (w—e)?
o ¥ (w_c)2d f Yyt
73 T —
. o—ot dy L ‘(l—a-fl (y2—y)dy
Let
Nis(e) =Nas (G)—;—A%(C) — Nag, (€)
where
(C Jiu (w d [‘ (w (yé_y)dy
A%@—f<wcﬁ@fMW%>%_ww
b'¢] S SU
Nﬁs(c):fyl w—o) dyL (w c) (ya—y)dy
Now,

N @= | o v [ 1w — —woldy

v (w—c)?
d f ¥ g
Y , 7

Nagy () =P(e) —Pi(e)

Sinee yo—1y,=1.0, and

L T
P(c) =L1 (w—ec)?

it is found that

where _
(T e
o= [ et [ ) dy
1[0 T
bs.ﬁ) i (w— 6)3 Gl(’?;c)dﬂ
and

(b 402 b, b
Gl(ﬂ;c‘):JH % 7 d?’}—'QCf %7} dn+cz‘} %7
2 k]

Pi(e} is evaluated by numerical integration using Simpson’s

rule. Define B

] T 1 (apn—p)2
Neyo)= [ e v [ 7 1oy — w0l dy
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Since
Uz

T
w—c)? dy= K;,(c)

v (w

and
[ 7 gy=m
Yt
it is recognized that’
n (w—c

Nu =K@ | 7.0~ [ 272 y—yiay |
[ gy = [ otw—crn | "ar= bQU plut—2emci)dy [ dn
N “"‘C) —vody=gs ([ wstdns [T T dna—2¢ [ s s | Tanat et [ dns [ 7 )

¥ (w—c)?

The integral j 7 (y—vy,) is evaluated by numerical integration in exactly the same way as Ng(e).
JUN _

The integral Ny, (¢) is transformed as follows:

Yi (w )

Nagy (€)= | (w_c)zd 7 (=1 — @~y dy

But - — -

Y z/(w c)

n (W= C)Zd f = Hz”(c)
and

Yo—Yo=Yo—Y) — Ye—Y =1—0
so that

Naa, (€)= (1—0)Hz, () —a, (6)
where

T
Jzn(C) @———'c—)_dyf: (w ) (y—y.) dy

The integral J; (¢) is evaluated in the same way as Ki(c).

Thus
RETuo=gg 3o (50 o (T 3500+ (505 s Uiy =} ) et et

5D(}+ g l:‘—— _4(5300+ a4(5D0+ OOJ‘!‘ a (“!—6(1200"‘ 10013DQ 4@301)+ a ——4GOQ+ 10CLZD0+ 6@20l)+

ot l:—_% P %%ggig-—ma—MDo]-l-af’ (—g Qo)

where
O=Q}_lf1(y1)
TR 16 K
D1 J () fl(ylfo ()
01‘5 16§fo<y1 Fam)
4 filyy) 1 f2(yy)
D=+ g vt s

Finally
. R P st(c)——R P N321(0)+Z\322(C) 2\323(0>
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(¢} Define
w— c 2 n
dy. ( ) 4y f

After several transformations, the integral Ny (c) is brought into a more convenient form

Nau(€)=Nar, (0)+Era0)[2H, (€) - Hr, (€)1 — Ny 0)

[ _ (i T ¥ (w—e)? ] [’f T
No@ ="t | ay | " g

, n T ¥ (w—e)? ¥ T
ATMS(C):.,[;!; w—c)? dyfh‘ TC‘ dy Tw—rc)? dy

Ju (W

Na(e)= ’i’! L

J (%_C) dy

(w— 6) w—o)?

where
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The integral Vs, (¢) is evaluated by numerical integration using Simpson’s rule. Some of the integrations have already

been performed. The integral is given as

o T v w—a? (7 T
Nay(0)= ,J:)éb (w—c)? dqf w T dnfo.y; (w—e)? @

The integral Ny (¢) is evaluated in exactly the same way as K, (c}; that is,

1

N (@ =gmoys { ~ 5 500+ ot | B — 30 [+ | im0y 408y @)~ ") |{ ~Tna—) PB—

2 In{a—e)

ta—a}

: E—GSF%-[‘ 2 g"gjo(yl) —{—1—2-f0’(y1)—a I_gfcl(%) +pofo(y1)+§f1(y1):|-i—a2E+? F§+

A-F- i (:ilna-rfifo(yl [32307%(2/1) 9f1(2/1):| F—[-cr{ I (s ~f0(y1)—f—a [Pofo(yl)+ fl(yl)]

s I:POfu(yx) —gfo’ (y0) _%fz(%) _gfo"(yx) _a(E+D:l+ a* [(PI“QO)fo(Z/I) +pofo’ (1) _‘l‘fo”(yl):l )‘1‘1& (a—a) [Bln -+

(} ﬁfl(yl @) 3f1 )+ @D —a { i) + IL?EZL))} QO)

o I:Pofl (1) _gfll(?/l) —%Jﬂ%)(_%l—‘%f "y —a(D+ O)]—Gé [gﬁ”(yl) —pofi (1) + (!Zo‘?l)fl(‘yl):l ]_%fo@h) -

S+ G Aw o] 11,00 —400m [ { Rt w0~z £ 0 1
€a—o—) 0—[3f1 (1) —4p: fo(y1) —4pefo’ (yl):l—— U‘)fz(yl)—" (@—0o)*In ( —J)fl(?h)—— (@—a)?af’ (yl)ln(a—a}—‘-

(@—o)¥lnle—o) {‘1“ Al _Tgfl(.yl)'l’o} +(:;_ <‘“§fu(%)463 []iz(y;_gfa(yl)%‘{'gfl(yl)]—

9 folys)
o LI I W)~ o )+ A1+ o)+ oty 2L )

L
I

In{e — @) [—sﬁ(y) —a {fl (yl)‘{‘é Lj;l(ék)) 3f1(2/1)P0}

1f2(2/1)f1(y) _ Do [fl

2 [l

Ry 120 @) [Aw) T, _5 o £ NLD
o (7o (R [AU) Tar) |2 iaptpofy @01+ E A a4

where

A= A+t | 51 @) —ofite) ot [ 5w —poft 0+ @m0 |
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fl(yl) 2.f1(3/1)f1'(y1) Jilys) Ay fl(%)fl”(?h) 2f;,('yx)fl’(y1)fo’(yu o
G <(g0 2 foy) 0{ Jolyn) Joly) ]fo v } { Joly) J Joly) [foly)]?
1 Jily) " Jily) Lo wol? g Ay o fo(yl)f&h)_l L) Ty, _ Lflﬁl’/_lw
L [ oot 2G5 s 3 -3 s [ w -, AR
v fx(@/l {fz(?h)fx(?/l) o
O Gt 0 —5 RS

D=p i () 00100 + 24 (yﬁ){yl )(?/1

fl<yl) § ’
2 Tty

E=pofy (90 + 0.0 +3 £ ()

P=po )+ ufoly) ~ % o)

EVALUATION OF f(m

The functions f:(y,), which appear repeatedly in the
evaluation of the integrals Ki(c}, H,(c), and so forth, are
evaluated in terms of w,® and T1:* as follows:

— 1 I * __ / A:”<y1>
.fkyc—m [<¢2) :Lc—fk(?:’x)‘}‘fk (y)o+—57— 31 2 S
fo™ (y:)=— (Tgo)ﬂlcm)

——| Tt m e 4 M g,y

m!
(m—r)lr? _T)g +... +T19m:| (Oéméﬁ)
where
—_— 1 =
g (w,)?
gr=2g,4,
=—=2(go 4" +¢:42)
Gn="2[go A" V- (m—1)g: A, "2, |
!
@%ﬁgrﬂz(mf Dt gnaidl
’ (m) L m 1 m,
@) =(T'ot3.0.7) = (T, ™15 01,
Ut
(0=m<5)
1 ; N
A @) =5 (Tg0)5, ™0+ (Tgo), ™ 0sm=4)
where . )
1
5 (Tg0Ss) yl(m)“’ fo(% Syl ™

and
Sg(k)=% Bg(k}—“g“ As(k) (Oéké‘i)

1
@) =15 (T7'0t5 T7g) 47 (T'0,8),,—
1

1—12 Uo(yxjss]yl o

- (0=mg3)

Fi () =g (T 2T 00), - (77790, ™ +

% (TS, @=L 8L, ™ 0sms2)

1 5 () 1 I m
)= g5 Totg aT) "+ g (T3S0, ™+
1

l rr my 1 / m m
@(T 90S3) 3, ¢ )TSTG(T go&)yl‘ — 480 [fe(Jl)Ssl ™
(0=m<1)

fs(@/1)=g6]bﬁ(T19V50+3T1Vg1)+go <'2741L6 lesz‘{'ﬁﬁ TIIHSS'}'

1 /f f
240 S“LGOO TS~ 3600 T‘&)
where
Ss(k)=333(k)_3@(k)._%_[14(5-‘) (O§k§3)
S4<“>=~§A5<k>+334<k>—1203<k>+%5 D®12B,® (0<k<2)
S, = ;%As(k)+335(k>+538(k)_ 150, —200,® —
5UD3(k) —% Eg(k) (0 §k é l)

Sg_—‘—%ﬁr‘}— 335+ GBIO'—' 1805+L5‘ .Bg_‘GOCYg'{“ 75D4"—

3 13 F,

2 O 150D,— 225t
A and B, are defined as previously.

02 &) =Ba (k)__;_ Bgck+1)
Cg(k)=_;_ (34(“-*-37(“—33“""“)
O4(1c)=_;_ (35@)_{_38(1:)_34(1:4-1})

O:s(k)=%‘ (Bd(k) "E‘BIOUE) _Bs(k-H))
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1
k k k-
Cy® = By® — B0+

C,=B;
C'fs= 4‘121{3[}.4

1
D2CE)=CFS(I:}__§ L&+

Ds‘“——— (2C,® 4+ O, — O &1y
Déck):% (20 ® L ;0 — (541
D, (k)__ 5 (2068 O — Gy 5+0)
Ez“":Ds“"—:il- D, &+

E("-— (3D,® L D,® D, &+1)

F2 (k) :Ei(k) _é FL &
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ORDER OF MAGNITUDE OF IMAGINARY PARTS OF INTEGRALS H,,
M, AND M

In the detailed stability calculations the contributions of
the imaginary parts of the integrals H,, 47;, N5, and so forth,
to the function »(¢) are considered to be negligible in com-
parison with the contribution of the imaginary part of
K (e). A calculation of the orders of magnitude of 1. P. H,{e),
I. P. M;(e), and 1. P. N3(¢) from the general expressions
given in the preceding pages shows that this step is justified,
at least for the values of phase velocity ¢ that appefir in the
stability calculations.

For example,

LP. Hy()=1.P. Hy (o) ==AW.)fi(y.)

where

&
A=—3—1— O+

Therefore

LR H(0) =510 7o

The contribution of I.P. H.{c) to »{¢) is approximately equal
e & _w'e . N
to v l:§ T (101')} where 1,= T I.P. K (¢}. Thequantityin

the bracketsis of the order of 0.03, at most, in the calculations
of the present paper.
R, for Mach numbers very much greater than unity, e

becomes large because ¢>>1 —%; however, @ is small when

¢ is not much greater than 1— U and the results of ihe
Q

calculations of Re based on the approximation

z(c) _201 I.P. Ki(c) are quahtatwely correct (fig. 7).)
From the expression for N;(c},

LP. N;(e)=~ ¢
2(w)?

I.P. I{H(C) B

so that the contribution of I.P. Ny(¢} to »{c) is approxi-
2,2

mately equal to 7 [ﬁc,)z - 'The quantity in brackets is of
1

the order of 0.06 at the most. ,
The imaginary part of 3/;(¢) is considerably smaller. Infact,

I.P. 3(c) ~ I.P. Ki(c)

gT ( 1)2
and the contribution of I.P. 3L;(¢) to v(c) is approximately
equal to g 9T (w ,)2:{ The quantity in brackets is of the

order of 0.001 at maximum c.

(In the approximate calculations of



APPENDIX B

CALCULATION OF MEAN-.VELOCITY AND MEAN-TEMPERATURE DISTRIBUTION ACROSS BOUNDARY LAYER AND THE
VELOCITY AND TEMPERATURE DERIVATIVES AT THE SOLID SURFACE

The mean-velocity and mean-temperature profiles for the
several representative cases of insulated and noninsulated
surfaces are calculated by a rapid approximate method that
gives the slope of the velocity profiles at the surface with a
maximum error of about 4 percent in the extremc case, for
which 77=0.70 and A£;=0.70. The surface values of the
higher velocity derivatives and the temperature derivatives
required in the stability caleulations are obtained directly
from the equations of mean motion in terms of the calculated
value of the slope of the velocity proﬁle The Prandtl
number is taken as unity.

MEAN VELOCITY-TEMPERATURE DISTRIBUTION ACROSS BOUNDARY
LAYER

In a seminar held at the California Institute of Tech-
nology in 1942, the present author has shown that a good
first approximation to the mean velocity distribution across
the boundary layer is obtained by assuming that the vis-
cosity varies linearly with the absolute temperature. With
this assumption, the velocity w(¢) is the sa*me function of

the nondimensional stream function §‘= as in the

Blasius case, and the conespondlng dmtance from the
surface p=y* \/__ - is obtained by a simple quadrature

when o¢=1. Actually, the approximation w({)=wg(}) Is
the first stage of an iteration process applied to the differ-
ential equations of mean motion in the laminar boundary
layer, in which pocT*7¢ (¢ is a small parameter equal to (.24
for air), and w(O=ws(O)+ ew(&)-Ffwa(D)-- . . .
lation of w((¢) for 71=1.50 and 7,=2.00 for A;—0 showed
that the iteration process is rapidly convergent; the con-
tribution of the second term to the slope of the velocity
profile at the surface is 5 percent for 77,=1.50 and 8 percent
for 77=2.00. In the present calculations the maximum
error in the slope introduced by taking w({)=ws({) is about
4 percent in the extreme case. (See reference 15, in which
the authors make use of a linear
relation. See also reference 23.)

That w()=ws(¢) for a linear variation of viscosity with
absolute temperature is seen directly from the equations of
mean motion in the laminar boundary layer. The equation
of continuity is automatically satiefied by taking

2w

0¥ oy

e

368 . .

Calcu-

viscosity-temperature

and

The stream function ¢* and the distance along (he surface
z* are seclected as independent variables following the pro-
cedure of Von Mises, and the dynamic equation of mcan
motion becomes for zero pressure gradient

Duv ou*
po*® a‘!}* U ¥ UK s oY

Define the nondimensional stream function ¢ by the relation
®

¢ =—_—T—{‘_?:f; The dynamic equation takes the following
v l’u* Uo*

form:

tdw_ d dw
o dr df \PMY

Since p=lTin the boundry layer, if u=71, the dynamic equa-

tion in this form is identical with the equation for the
isothermal Blasius flow, that is w(¢) =ws({), or the value of
the velocity ratio w is equal to the Blasius value at the same

: =
value of f. The corresponding value of n-—-—y*.\/és—’;, the
~ ' [ vo*x

nondimensional “distance’” {from the surface, is obtained as
follows:

— Oy — O{
pU]u’Q*:aZ*: IV(’* uO’F x* 5,;
or J
ot
¢ ¢
Jo pw o Jo w

If a=1,ythe energy and dynamic equations have a unique
integral and

T— Tz—[(Tl—l) it M&jl

— 4
JE [P ar

as shown by Crocco:. Therefore,

_p [t
n= le; E-[(TI

Butw({) =ws({), and

72=T1178—[(T1—1)'"’Y;21ﬁf02:u Bwsd??B—l%:‘l ﬂf(ﬁ[ watdng
S i
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g 7g
The integralsﬂ wg dyg and f wg? dng are given in the fol-
0} 0

lowing table, and the mean-velocity and mean-temperature
profiles can be calculated rapidly by this method. (The

valuesof(%l;)—) are used in the approximate calculation of
0 B

R appendix C).
¢, . (8PP )-)
I 7 dw
w| e e | (%)
B B F deqB) f weldy 5z
0.00 0. 0000 Q. 0000 0.0000 0.3320
%0 0664 ~0066 - 0003 -3310
i L1328 0265 L0024 L3314
.60 L1989 L0599 .60 .3300
.80 L BBAT L1065 L0189 3274
1.00 -3298 -1680 L0367 .3230
1.20 L3938 B85 L0830 . 3165
1.40 L4563 L3236 0903 L3079
1.60 L5168 4210 L1468 L2667
1.80 L5148 L5302 L2064 L2825
2.00 16298 6508 L - 2663
2.20 . 6813 . T821 .3654 L2483
2.4 L7290 L9231 L4648 . 2280
2.60 JTT25 1.0733 5776 264
2.80 8115 1.2319 L7038 L1835
3.00 L8160 1.3978 L8431 L1618
3.20 L&6L 1.5702 L8897 L1408
3.40 .S018 1.74%0 1.1478 1180
3.60 L9233 1.8206 1 3145 .(0986
3.80 G413 21171 1.4584 0805
4.00 . 9555 2.3067 1.6682 L0640
4.40 9759 2.6933 2.0419
4.%0 L9878 3.0363 2. 4280
5.20 .go42 3.4%838% 28211
5.60 L9975 3.8812 3.2180
6.00 . 9990 4.2805 3.6167

With the approximation that p varies linearly with the
absolute temperature, the slope of the velocity profile at the
solid surface is simply related to the slope of the Blasius

profile. Thus
Dw dwdp dw
Tdrdy U
since w(f) =ws({),
ow_ (ow
o ° an)g
and
dwy _0.332
aﬁ) - T1
or
dw ,_0.332 b
dy ==

where b is the value of 5 at the “edge’ of the boundary layer
{when w reaches an arbitrarily prescribed value close to
unity). It is seen that the shear stress at the surface (or
the skin friction) has the same value as in the Blasius case

(a“*)—fT # (5000
syl (B ]=C
IB

The reliability of this approximation can be judged from the
calculations of the skin-friction coefficient in reference 24,
in which poc7°7, From figure 2 of reference 24, the value
of the skin-friction coefficient for an insulated surface at a
Mach number of 3.0 (7:=2.823) is only 12 percent lower

II

=—#F 1 Up*

-369
than the Blasius value and only 2 percent lower at a Mach
number of 2.0 (T;=1.81). For the noninsulated surface,
with 73:=0.25, the value of the skin-friction coefficient at _
Af,=0 is only 7 percent greater than the Blasius value and
12 percent greater at a Mach number of 3.00.

Since the shear stress at the surface is unchanged in first
approximation, the boundary-layer momentum thickness bas
the same value as for the Blasius flow '

/ uo
i
The expression for the displacement thickness &* gives a
measure of the effect of the thermal conditions at the solid

surface and the free-stream Alach number on the tludsnesq
of the boundary layer. By definition, S

——0 6667

[ u
5*,/

= r (1—pw) dy

From the relation between dy and dys

l!u*

E*X’T_Er*zf) [(T—1)+(1—we)]dye
Q P

=1.73+ (T, —1)1.73+"—F— ’Lfn (0.6667)

—1.73 T1+“%1- 37 (0.6667)

For the Blasius flow

—
s/ 22} =1.730
( \ ”t‘*x*)B
The “thickness” of the boundary layer b is given by

b=5.60-+ (7, —1)1.73+7 3[0(06667)

*®
and the form parameter Hz% is

H=250T,+ JIO

For the insulated surface,
=N _ Y 1 2
H=2.50 L1 3.50 TEL[O_
CALCULATION OF MEAN-VELOCITY AND MEAN-TEMPERATURE

DERIVATIVES

Because of the sensitivity of the stability characteristics
of the laminar boundary layer to the behavior of the quantity

%/( dw) the values of the required velocity and tempera-

ture derivatives at the surface are calculated directly from

the equations of mean motion, with p=7™ (m=0.76 for air). _
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Now %=§"=bpw so that the dynamic equation is
—b %w’:(T’"w’)’. Sinee {0)=¢"(0)==0,

m
w1”='—"'fT1 TL/wI,

where T1’=w1’[%iﬂ102— (Tl—l):}, if o==1. In other words,

the value of w,’’ is readily computed from the value of w,’.
In general, w,® is determined from the relation

_g (;—wf)k—i.’—:(me/)k—l
or
T F—1D)1! o
wl(m=ﬁl:(k—l)mT1 i H-(/’E—S))rzr<T]’2n1 w4+
UL—I)T (Tm) (s} o (Tm) (-1} ,
G—i—gel T 0 e — w |-
2%{1 [fl(k_’z)wlf‘i' =2y, 3", +
<k.(k2_23«>—rmf“ gy 08 E2 e |
where
£, =b (o), o
=5 [p<p-l>w+ (= Dp w4+ .+
p=1, ...5
- and
1
= -
' Tl,
£ =—‘ﬁ
//___2(T1,I,)2_,_,_£: ,,,,,
= T3 TIQ
o Tlf/-— (Tl )3 T//I
o' =6D" gy —6 St —
e _ (Tz’)
T =m(m—1) +m T1
(Tm)///_ 5 L_) _ Tl TIN TI//! o
T,» =(m, 2) T3 +3m(m—1) +m T

NO. 876—NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

/ my fv IAY] £
k= (m,3) G rom,2) <T1}—3T‘—+
m(n;"riz [4T1 TI///+3(T1N) }+ﬂl i
(Tm)v—( }4) (Tl) +10< ’3) (TI,) Tl +
(m 2) [15 Tl <T1/I) +10(TLI)QT!II}
| m——(”%z Lrory 1 s Ty T m
(Tm)"i_(m r) (T}./) +15( ) (Tl%gl +
(m 3) [45(]’1/) (Tlfl) +2O(T1,)3T /Il]
("%lﬁ (60T Ty Ty - 15( Ty )2 Ty 15Ty +
@%ilj—l)[10<T1"')2+15T1“TIW+GT1'T¢]+mTTa?
(m, 2)y=m(m—1)(m—2)
m,n)y=m(m—1)(m—2) . .. (m—n)
m=0.76
(m, 1)=—0.1824-
(m, 2)=0.226176
(m, 8)=—0.506634
(m, 4)=1.641495
(m, 5)=—6.959939
T/ =aw,/
where

a:% MpA—(T,—1)

TV =aw" — (y—1) My*(0,")*
TLIHZCE’LULIH
Tll\f:awliv_ (7_1)2-1102 [3(wl//)2+ 4'w1’w1”’]
T1v=d@1v_5(7_l)ﬂfog(2wz”w1’“+w1,’w1w)

—3(y—1MePw, "w,”

Tr=aw™— (y— 1) M[10(w ") 4 15wy ", "+ 6w, w,"]

Each velocity derivative is determined from the knowledge
of all the preceding derivatives,

W b



APPENDIX C

RAPID APPROXIMATION TO THE FUNCTION (I—2Nr(c) AND THE MINIMUM CRITICAL REYNOLDS NUMBER

In section 5, a criterion was derived for the dependence of
the minimum eritical Reynolds number Ey,,  on the local
min

distribution of mean velocity and mean temperature across
the boundary layer. It was found that

6 [T(c)]*
Tl Cg ‘\1"".3[0 (1_60)2

[}
€Tinin

where ¢, is the value of ¢ for which (1—2\)#(c)=0.580 and

) c w’

ow
_‘T(‘a—,,)f T 2 /1 aw>
B T, bw) g\ T o7

wy (Ye—1y) 1
[52

AMey=
ow
1(5r),

e

A rapid methed for the caleulation of the function (I1—2N)e(e)
and the minimum critical Reynolds number is developed by
making use of the approximation that the viscosity varies
linearly with the absolute temperature (appendix B).
(Since the effect of variable viscosity on the mean-velocity
profile is overestimated in this approximation, the values of
Rﬂcrm {fig. 6(a)) calculated by this method are lower than

the values caleulated for p=7°7% when heat is added to the
fluid through the solid surface and higher when heat is
withdrawn from the fluid.)

For u=1T, the dynamic equation (appendix B) is

{ow__ 0 /low
227 O (E n
and therefore
o*w
T* aflbw) r{ o’ _10T
dw oy \T oy ow Ty
dn Oy /
¢, 507N
~(a725;)
But
T _ 1 Q’)
an_T<3n ®
so that

(25 )= 3+7(5).]

where _

T—T,— [(TI—U _rt M&] wy—

G-l

Finally,
OES (g;?)” [5+2(5 D]

The required values of wpg, <2—?§> » and { are obtained from
B

g L Awg?

—1. ., 2w
—n—17= Ma-(l—zwg)] (a: ]

the table in appendix B.

The small correction to the slope A(c) is easily caleulated
once the mean velocity profile has been obtained (appendix B).
Thus

Mo=2g2

11 =0
The quantity (1—2)\)e{e) has been calculated as a function
of ¢ for various values of T} at 3/,=0, 0.70, 1.30, 1.50, 2.00,
3.00, and 5.00, and the results of these calculations are
given in the following table. The decisive stabilizing
influence of Withdram'ncr heat from the ﬁu1d at supersonic

velocities is illustrated in figure 7.

Ti 3 R‘:r“il ™, Ce R’:r.“.“
My=0 My=0.70
0.70 0.1945 3650 0.70 0.1670 8440
.80 . 2695 1080 &0 .2390 2110
Y] L3435 162 90 .3265 613
1.25 . 5435 67 1.25 5425 74
1.50 .6240 36 1.5

-6265 33

Afp=1.30; ¢>>0.231 Afy=1.50; ¢>0.333

G.X 0.2455 9230 130 0.3450 20
1.05 4075 362 1.35 . £585 275
1.20 5170 121 140 - 5505 99
1.3422 5450 92 1.4536 -6276 19
1.5 6355 42 160 -T732 16

Me=2.00; ¢>>0.500 ALe=3.00; e>0.667

1.63 0.5074 671 248 0.6730 186
1.65 -5438 207 52 - 7058 59
170 .6155 75 2.62 . 7655 24
1.75 -6749 410 2.72 .8105 14
181 L1275 25 277 -8295 10
1.85 L7612 19 2.8225 -8500 9

Me=5.00; ¢>0.800

5.19

5.20 - 8036 &0
5.30 .8262 23
5.75 -9008 [
6.0625 -9350 3

371



APPENDIX D

BEHAVIOR OF d—% (p%) FROM EQUATIONS OF MEAN MOTION

In order to determine the effect_of [ree-stream Mach
number, thermal conditions at the solid surface, or
free-stream  pressure gradient on laminar stability,
it is necessary to know the relation between  these
physical parameters and the distribution of the quantity

p édﬂy) across the boundary layer. Thevalue of a% <p%) at the
solid surface is obtained directly from the dynamic equation
(equations (74) and (79)). The value of 7 2< a’w) at the

surface, which is also useful in the discussion of laminar sta-
bility, is obtained from the dynamic and energy equations

IO NP

,wl/// 2w1”T1
T, T2

wl’ Tlfl

+2w1
Differentiating the dynamic equation once yields the result

[tm—sy L4 L]

-3

i "mTl wl T

At the bOhd surface the rate of change of temperature
(fii’* and the mte at which the work is done by pressure

gradient w* gph both vanish, and the rate at which a fluid

element loses heat by conduction equals the rate at which
mechanical energy is transformed into heat by viscous
dissipation. The energy equation becomes

abdGE I G

372

<T1 )

or

(Zy

T]II—_——-—O'('Y"—I)B.'[OE(wll)E— ) <0

Utilizing the expression for wy’’" and 77"/ gives

o (7)) = =20t 7 [ 5, (7) |+

o(+m) -1tz G-

d w_’)]__m—{—lT, ;1
wy\T/]|~ T ‘1 U Tl+m

_ .
From this expression for [gdﬁ (%)] the following con-

clusions, which are utilized in the stability analysis, are

reached:
L fw . . 4w\,

When [3& <7>lvamshes, the quantity E?—JQ(-—T):LIS S(.lu

When the free-stream velocity is uniform,

where

8 dug*
* dx*

positive.

(wl

5 () | =earmo—nare G roam G v

that is, | L5 ()] is al itiv
thatis, | 75 ( 77) | is elways positive.
When the surface is insulated,

%(%)1:&1-%”%) (y— 1)L (“éil :

dZ

w’ . .
and dy T):l is always positive, regardless of the pressure
1

gradient,



APPENDIX E

CALCULATION OF CRITICAL MACH NUMBER FOR STABILIZATION OF LAMINAR BOUNDARY LAYER

For thermal equilibrium the rate of heat conduetion from
the gas to the solid surface balances the rate at which heat
is radiated from the surface. If the rate at which heat is
withdrawn from the fluid reaches or exceeds a certain critical
value at a given local supersonic Mach number, the laminar
boundary-layer flow is stable at all Reynolds numbers.
(See section 6B.) The purpose of the following brief caleu-
lation is to determine the equilibrium surface temperatures at
several Mach numbers and compare these temperatures with
the eritical temperatures for laminar stability. (See fig. 8.)

Yhen the solid surface is in thermal equilibrium,

L /yT* L _ J—
fq = (‘a‘y*>ldr=fo A1 (T o— (T7%) Jdw

where eis the emissivity, ¢ is the Boltzmann constant, and
the other symbols have already been defined. (See refer-
ences 14 and 15.) Consider the case in which the free stream
is uniform and the temperature is constant along the surface.

For ¢=1,
aT) To (T,—T)) <aw>
1

where stagnation temperature T, equals 1—{—7%141103.

(E1)

Also ( ) —5\ —_— & if the approximation p= 17 is
employed. (See apptndlx B.) Since k¥ =cuo* =i * 11,
B (305) =032 ¢, ¥ ot aF T (L= T\ i

When the integrations in equation (E1) are carried out, the
following relation is obtained for the determination of the
equilibrium surface temperature:

VE(T ¢ —1)=(T:— T) v,
where
T €3

H=227 ———— —
¢ po®* p* —\f('y—l)CpTg*

The equilibrium surface temperature under free-flight
conditions is affected principally by the variation in density
oo* with altitude %. The results of calculations carried out

§388026—50——25

for altitudes of 50,000 and 100,000 feet are given in the
following table:

I 3 T—Ti,
) Mo T Thguit (8g. 8)
50108 3.0 0.370 0.355
100 X108 20 S22 1185
In this table,
T—T,,— ¢
or

(e ‘RL) W TovEs

where

¢  heat withdrawn from fluid per second per unit width of

surface
C, skin-friction coefficient for one side of surface
‘UQ*L
RLZ —
Yo"

L length of surface
T.* free-stream temperature
Io* heat-conduction coefficient of gas at free-stream tem-

perature
In these calculations the following data are used:
€=0.50
L=21t

To*=400° F abs.
e=4.80X107% Btu/sec/ft?/(°F abs.}*
¢,=7.73 Btu/slug/°F abs.
o*=3.02X 1077 slugs/ft-sec
‘@ * =980 ft/sec
“py*=3.61<107* slugs/ft® at 50,000 ft
==3.31X107% slugs/ft? at 100,000 ft
H=3.35X107* at 50,000 ft
=3.66X107% at 100,000 ft

Since T,— TImiI>T Ty, for 3y=~3 at 50,000 feet

altitude and for 3/;=2 at 100,000 feet altitude, the laminar
boundary layer is completely stable under these conditions.

It should be poted that under wind-tunnel-test conditions
in which the model is stationary, these radiation-conduction
effects are absent, not only because of reradiation from
the walls of the wind tunnel but also because the surface
temperatures are low—generally of the order of room
temperature.
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TABLE L—AUXILIARY FUNCTIONS FOR CALCULATING THE STABILITY

OF THE LAMINAR BOUNDARY LAYER FOR INSULATED SURFACE

¢ = S o z 120 I Ay Ny
My=0
(.0372 0. 0000 0 0004 0.0102 0. 5220 0. 2850 0.9089 0. 2909
L0744 L0001 . 0029 0285 L4748 L2740 (004 L3004
L1115 L0603 .6099 .0561 L4303 2590 L0530 .3124
1488 -0006 -0235 aofo |olsssr | mam | lo4es | J3t6L
1857 L0012 L0162 L1430 L3499 .2278 L0403 L3211
L2226 .002L . 0802 L2040 .3139 2120 L0350 . 3230
L2504 .0033 .1284 L2782 L2808 1958 -0301 L3217
2960 L0050 .1937 3670 . 2505 1597 L0256 -3174
. 3323 L0071 2794 L4721 L2232 . 1639 L0217 L3084
. 3682 . 0098 . 3896 . 5960 1987 1487 0180 . 2035
4037 0131 . 5286 L7418 AT 1350 L0139 L2768
4143 (0142 . 5767 JT904 711 1312 012§ L2618
AMy=0.50
0. 0362 —0.0000 —0.0004 | —0.0148 0.5122 0.2223 ¢.0443 0.1827
01237 —. 0000 —. 8001 —.0234 L4671 .2127 L0401 2080
.1085 L0001 0028 —. 0244 L4216 2012 0356 L2193
J1446 L0003 L0107 —. 0169 . 3847 L1904 0318 . 2280
L1806 L0007 L0254 —. 0003 L3474 L1788 L0262 . 2306
L2166 . .0014 . 0492 . 0260 8127 L1662 240 2420
. 2525 L0023 . 0846 0627 L2807 1530 0217 L2425
. 2882 L0036 L1342 L1103 L2513 L1390 .0188 2406
.3237 0054 L2010 1695 2246 1247 L0158 2333
L3588 L0076 L2882 L2412 5 L1104 .0128 L2179
3936 .0103 . 4000 . 3261 1790 0963 0094 L1914
4280 . 0137 L5407 . 4247 . 1692 .0828 0055 1444
4306 0140 . 5526 . 4327 .1588 .0816 0051 1397
4362 0146 5794 L4501 . 1560 0792 .0038 1262
Mo=0.70
0.0333 —0. 0000 —{. 0009 —0.0321 0. 5031 0.1839 0.0321 0.1484
Q705 —. 0000 —~10024 —.05%0 4598 1786 L0300 L1052
L1058 —. 0000 —. 0025 —. 0791 L4181 1721 0279 L1819
1410 L0001 - . 0006 —. 0014 .3808 1652 L0257 L1981
L1762 .0004 . 0090 —. 0951 . 3448 1569 .0233 L2128
L2114 L0008 . 0248 —. 08066 L3113 L1478 - 0209 . 225¢
L2464 L0015 L0501 —. 0741 . 2802 L1379 L0187 2358
2813 L0026 L0872 —. 047 L2616 1272 . 0166 L2436
3161 .0039 1389 —.0098 -2255 1187 L0142 . 2166
L3805 0058 2082 L0412 L3018 L1042 .0118 2417
. 3847 L0081 . 2085 L1067 .1806 . 0925 . 0085 2272
. 4185 L0109 L4137 .1886 L1619 L0813 0052 1087
.4352 0126 L4821 . 2363 L1534 0760 L0030 L1787
L4452 0137 L8270 L2674 1486 0733 L0016 L1618
4553 0149 5790 L3027 1436 0709 —. 0002 1575
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TABLE I—AUXILIARY FUNCTIONS FOR CALCULATING THE STABILITY TABLE IL—AUXILIARY FUNCTIONS FOR CALCULATING THE STABILITY
OF THE LAMINAR BOUNDARY LAYER FOR INSULATED SURFACE-— OF THE LAMINAR BOUNDARY LAYER FOR NONINSULATED SURFACE
Crmeluded I

c X g L m;m Hy M N3
¢ X v L H; H; Afy Nz
AL=0.70; Ti=0.70
3e=0.90
0.0282 0.0036 0.0825 0. 0635 0.6102 0. 3272 0. 0524 0. 2748
0521 0112 L1645 L0349 525 L3157 . .
0.0334 0. 0000 0. 1303 0.0180 0. 0908 LOTAT L0166 .2466 1184 L5367 L3045 L0481 L3081
. 0667 —.000L . 1268 L0185 L1133 .1630 - .3297 1400 5026 . 2936 L0458 .3233
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. 2997 L0022 L0947 L0128 . 2597 Jfe=0.70; T:=0.80
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. L3485 —.0100 —. 0203 L0178 . L1068 L0139 . 2297
L3831 —. 0082 L0427 0734 L1865 0870 .0113 . 2069
4174 —. 0079 L1286 1373 1668 (728 . . 1616
.4512 —. 0059 L2414 L2071 L1495 0582 L0042 L0816
4846 —. 0031 3859 2770 .1345 427 | —.0012 | —,
. 5002 —. 0006 L5184 .3212 L1248 L0314 | —.0067 ; —.2262
.5190 . 0006 L5779 L3349 .1212 L0263 | —, 091 | —.
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TABLE IIL—PHASE VELOCITY,WAVE NUMBER, AND REYNOLDS NUMBER FOR NEUTRAL SUBSONIC DISTURBANCE (STABILITY LIMITS)
FOR INSULATED SURFACE

¢ o R s Rs 4 P R a8 R
My=0 Ay=0.90
0.0372 0.0321 0.0038 3,030, 000 0.0334 111, 000, 000 0.0012 12, 600, 000
0744 . 0685 0082 178, . (0667 5, 960,000 L0028 678, 000
1115 L1103 0131 33,100 L1001 , 030, 000 . 0048 117,000
. 1486 L1583 0189 9,880 L1335 00, 000 L0072 s
1857 . 2146 0255 3,880 .1669 106, 000 L0101 12,100
2226 2808 0334 1, 760 . 2002 .46, 000 L0135 §, 240
2594 L3580 7 a7 . 2335 22, 600 L0175 2,570
2960 . 4535 0540 526 . 2668 12,100 L0223 1,380
3323 . 5707 L0679 329 2997 7,020 . 0280 0
3682 L7243 0862 220 3326 4,320 L0348 492
4037 . 9589 13142 162 3652 2,820 . 0430 321
4143 L0770 L1282 153 3976 1,950 . 0529 222
4143 1. 2730 . 1515 182 4206 1,410 L0653 161
4037 1. 2940 L1540 223 4612 1,080 . 0827 125
3682 1. 1960 1424 421 4636 1,080 . 0843 123
3323 1. 0400 1238 799 4812 1,016 . 1004 116
2960 .8728 L1039 1,580 4812 1,230 L1154 140
2584 T . 0854 3,270 . 4636 1,740 L1153 198
. 4612 1,820 L1148 207
4296 3,180 . 1029 303
.3976 5,5%0 . 0892 637
L3652 9, 940 . 0757 1,130
3326 18, 500 L0620 2,100
0.0362 0.0251 0.0029 4,270,000
0723 - 0338 . 0063 248,
1085 L0868 . 0L0Y 45, 700 Mi=1.10
1446 L1250 (146 13,500
1806 L1695 . (198 5,190
2166 L2216 0258 2,360 0.00% 5,730, 000 (. 0009 618, 00C
2525 . 2829 0330 1,210 1320 769, 000 L0029 82, 900
2882 .3556 0414 §82 1650 224, 060G L0050 24,100
3237 L4442 0518 416 . 1980 85,000 L0076 8, 160
3588 . 5549 0847 272 2309 38, 300 L0107 4,130
3936 L6993 0815 189 . 2638 1g, 300 0143 2,080
4280 L9301 1084 144 2965 10, 600 . 0188 1,140
4306 . 9558 1114 142 3292 6, 260 . 0237 675
4362 1.0140 1182 139 3616 3,920 .0297 423
4362 1.1880 1384 164 3938 2,610 . 0368 281
4306 1. 2150 1416 184 4246 1,850 . 0448 199
4280 1.2150 L1416 184 4572 1, 350 . 0860 146
. 3936 1.1246 1310 359 4836 1,100 L0676 118
3588. . 9788 1141 661 5104 1 . 0864 107
L3237 . 8272 0964 1,260 5104 1,220 . 0988 131
. 2882 . 686 . 0800 2, 460 4836 2, 060 L0862 223
- L4572 3,320 . 0865 358
- L4246 5,930 .0732 639
Me=0.7 L3938 16, 400 . 0622 1,120
0.0353 0.0191 53, 400, 600 0. 0022 6, 100, 000 Mo=1.30
0705 0415 3,060, 0600 L0047 , 000
1058 0677 555, 0600 Q07T 63,400 .
1410 0984 161, 600 QL2 18,400 0.2541 63,800 0.0047 6,630
1762 L1344 61, 100 L0154 6, 950 24, 800 L0085 2, 570
2114 1766 27,300 [ 3,120 3173 , 300 L0125 1,280
2464 2268 13, 800 0259 1,580 3488 6, 890 L0170 726
2813 2857 7,630 0326 872 3800 4 280 .0222 445
3161 3570 4,550 L0408 & 4111 2,800 L0281 291
3505 . 4433 2, 900 0506 331 4418 1,930 . 0351 201
3847 L5515 1,960 06830 224 4721 1,420 L0433 147
4185 6951 1,420 0704 162 5020 1,110 . 05632 115
4352 7917 1,230 0904 143 5072 1,070 L0552 1t
4452 8655 1,160 (989 132 5416 886 . 0788 174
4559 9704 1,110 L1108 127 5416 1 .0928 112
4559 1.1230 1,330 L1283 152 5072 2,310 . 0809 241
4452 1.1420 1,650 1304 189 5020 2, 550 L0789 285
4352 1.1230 1,980 1283 227 4721 4, 500 L0671 4
4185 1. 0720 2,670 1225 305 L4418 7,980 . 0561 829
3847 9381 4,810 1072 550
3505 7965 8§, 880 . 0910 1,010
3161 . 6659 16, 700 L0761 1,910
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TABLE IV~PHASE VELOCITY, WAVE NUMBER, AND REYNOLDS NUMBER FOR NEUTRAL SUBSONIC DISTURBANCE (STABILITY LIMITS}
FOR NONINSULATED SURFACES

\ - . I
c o R ) Re¢ c « R cee Ra
My=0.70; T:=0.70 Afa=0.70; T1=0.90 -
0.0262 0. 0339 82,400, 000 0.0041 9, 900, 000 0. 0433 0.0368 17, 100; 000 0.0042 1, 830, 000
0521 G734 5,360, 000 ~0058 644, 000 - 0863 ~0s15 1, 040, 0G0 - 0092 118, 000
07T . 1188 1,110,000 L0143 133, 000 L1291 . 1353 200, 000 L0153 232,700
1030 L1508 371,000 L0205 44 600 L1714 . 62, 500 . 0226 7,070
L1281 2308 161, 000 0277 19, 300 . 2135 27I5 25, 500 L0314 2, 880
L1529 .3030 83,400 0364 10, 000 2551 .3728 12,400 L0422 1, 410
L1701 L3670 57,200 L0441 6,8:0 . 2963 4580 6, 9:0 L0563 780
L1726 L3777 54,400 L0454 6, 540 .3166 5814 5, 520 . 0638 624
ATH 4336 69, 000 L0599 8,250 L3268 -6347 4,090 L0718 565
1701 4977 73,900 . 0588 8,870 . 3268 817 6, 500 . 0884 735
. 1529 L4732 121, 000 . 0568 14, 500 .3166 .70l 7,920 LOSTL 835
1281 4175 270, 000 L0502 32,400 . 7307 11, 600 L0827 1,310 o
1030 L3460 711,000 L0416 85, 400 . 2551 6275 23,200 L0710 2
0777 .2620 2, 500, 000 L0315 300, 000 L2135 . 5133 60, 300 . 0581 6, 820
0521 1713 14, 600, 000 L0206 1, 750, 000 174 . L3973 170, 000 L (449 169, 200
L1201 . 285 617, 000 .0323 - 69, 800
. 0853 L1783 3, 740, 000 . 0203 423, 000
My=0.70; T1=0.80
ANL=0.70; T1=1.253
0.0237 0.0237 157, 000, 000 0.0028 18, 300, 000
L0472 L0504 9, 910, 000 L6039 1,150, 000
0705 L0804 1,970,000 L0094 230, 000 0. 0346 0.0180 78, 800, 630 0. 0016 8, (56, 00¢ -
10937 138 633, 000 L0133 73,700 -0662 ~0346 £ 380,000 - 0036 450, 000
1188 L1508 263, 000 L0176 30, 600 L1040 0564 770, 000 . 0058 79,000
L1397 L1923 129, 000 0224 15,000 .1389 . 0819 217, 600 L0084 22, 200
1625 . 2382 70,900 L0278 8,260 L1738 1120 78, 900 L0115 8, 100
.1851 . 2008 42, 600 .0339 4, %60 288 L1477 34,000 L0152 3,490
20075 L3510 27, 500 . 0409 3, 200 . 2439 1869 16, 500 .0195 1,7
. .4237 18, 800 0464 2,190 L2789 L2403 8 830 0247 7
L2409 . 4668 15, 900 L0544 1,860 .3138 . 3002 g, 070 . 0308 520
L2475 4962 14, 500 L0578 1,6%0 L3485 L322 8,110 . 0382 319
. 2475 .6308 18, 500 0735 2,160 .3831 L4584 2 020 L0471 207
L2409 .6233 21, 400 L0726 2, 500 L4174 . 5668 1,380 . 0582 142
X ~8056 27,900 S0706 30170 L2 ~7061 1,600 0725 103
L2075 . 5609 44 600 0654 3, 230 .4846 9067 T L0931 T
1851 . 5062 77,400 .0590 9,010 L3092 1.1800 643 L1211 66
L1625 . 4485 141, 000 0520 16,400 . 5190 14480 615 L1486 63
L1397 L3827 236, 0600 L0446 32, 600 . 5190 1. 5880 640 .1630 66
.1168 .3164 630, 000 .0369 73, 400 . 5092 1.7250 BOG 1770 83
0937 . 2489 1, 690, 060 0260 197, 000 L4816 1. 537 1, 390 1577 142
0705 .1822 5,890, 000 0212 688, 000 .4512 1.2580 2,74 L1291 281
L4174 1.0330 5, 360 . 1060 850




